Context Perception Parallel Decoder for Scene Text Recognition Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.12270
Scene text recognition (STR) methods have struggled to attain high accuracy and fast inference speed. Autoregressive (AR)-based models implement the recognition in a character-by-character manner, showing superiority in accuracy but with slow inference speed. Alternatively, parallel decoding (PD)-based models infer all characters in a single decoding pass, offering faster inference speed but generally worse accuracy. We first present an empirical study of AR decoding in STR, and discover that the AR decoder not only models linguistic context, but also provides guidance on visual context perception. Consequently, we propose Context Perception Parallel Decoder (CPPD) to predict the character sequence in a PD pass. CPPD devises a character counting module to infer the occurrence count of each character, and a character ordering module to deduce the content-free reading order and placeholders. Meanwhile, the character prediction task associates the placeholders with characters. They together build a comprehensive recognition context. We construct a series of CPPD models and also plug the proposed modules into existing STR decoders. Experiments on both English and Chinese benchmarks demonstrate that the CPPD models achieve highly competitive accuracy while running approximately 8x faster than their AR-based counterparts. Moreover, the plugged models achieve significant accuracy improvements. Code is at \href{https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/algorithm_rec_cppd_en.md}{this https URL}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.12270
- https://arxiv.org/pdf/2307.12270
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385261455
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385261455Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.12270Digital Object Identifier
- Title
-
Context Perception Parallel Decoder for Scene Text RecognitionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-23Full publication date if available
- Authors
-
Yongkun Du, Zhineng Chen, Caiyan Jia, Xiaoting Yin, Chenxia Li, Yuning Du, Yu–Gang JiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.12270Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.12270Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.12270Direct OA link when available
- Concepts
-
Computer science, Inference, Context (archaeology), Decoding methods, Character (mathematics), Speech recognition, Perception, Code (set theory), Autoregressive model, Artificial intelligence, Construct (python library), Task (project management), Pattern recognition (psychology), Natural language processing, Algorithm, Psychology, Programming language, Set (abstract data type), Management, Geometry, Paleontology, Mathematics, Economics, Neuroscience, Econometrics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385261455 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.12270 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.12270 |
| ids.openalex | https://openalex.org/W4385261455 |
| fwci | |
| type | preprint |
| title | Context Perception Parallel Decoder for Scene Text Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10601 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Handwritten Text Recognition Techniques |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9865999817848206 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9787999987602234 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.794385552406311 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7330618500709534 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7298335433006287 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C57273362 |
| concepts[3].level | 2 |
| concepts[3].score | 0.713947057723999 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[3].display_name | Decoding methods |
| concepts[4].id | https://openalex.org/C2780861071 |
| concepts[4].level | 2 |
| concepts[4].score | 0.675696074962616 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1062934 |
| concepts[4].display_name | Character (mathematics) |
| concepts[5].id | https://openalex.org/C28490314 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5486687421798706 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[5].display_name | Speech recognition |
| concepts[6].id | https://openalex.org/C26760741 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5219252109527588 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[6].display_name | Perception |
| concepts[7].id | https://openalex.org/C2776760102 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5192809104919434 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[7].display_name | Code (set theory) |
| concepts[8].id | https://openalex.org/C159877910 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5020351409912109 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[8].display_name | Autoregressive model |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4869116544723511 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C2780801425 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4830820858478546 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[10].display_name | Construct (python library) |
| concepts[11].id | https://openalex.org/C2780451532 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4506077468395233 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[11].display_name | Task (project management) |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4034034311771393 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C204321447 |
| concepts[13].level | 1 |
| concepts[13].score | 0.37569910287857056 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[13].display_name | Natural language processing |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.19477912783622742 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C15744967 |
| concepts[15].level | 0 |
| concepts[15].score | 0.13287353515625 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[15].display_name | Psychology |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1028909981250763 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C177264268 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[17].display_name | Set (abstract data type) |
| concepts[18].id | https://openalex.org/C187736073 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[18].display_name | Management |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| concepts[20].id | https://openalex.org/C151730666 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[20].display_name | Paleontology |
| concepts[21].id | https://openalex.org/C33923547 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[21].display_name | Mathematics |
| concepts[22].id | https://openalex.org/C162324750 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[22].display_name | Economics |
| concepts[23].id | https://openalex.org/C169760540 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[23].display_name | Neuroscience |
| concepts[24].id | https://openalex.org/C149782125 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[24].display_name | Econometrics |
| concepts[25].id | https://openalex.org/C86803240 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[25].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.794385552406311 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.7330618500709534 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.7298335433006287 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/decoding-methods |
| keywords[3].score | 0.713947057723999 |
| keywords[3].display_name | Decoding methods |
| keywords[4].id | https://openalex.org/keywords/character |
| keywords[4].score | 0.675696074962616 |
| keywords[4].display_name | Character (mathematics) |
| keywords[5].id | https://openalex.org/keywords/speech-recognition |
| keywords[5].score | 0.5486687421798706 |
| keywords[5].display_name | Speech recognition |
| keywords[6].id | https://openalex.org/keywords/perception |
| keywords[6].score | 0.5219252109527588 |
| keywords[6].display_name | Perception |
| keywords[7].id | https://openalex.org/keywords/code |
| keywords[7].score | 0.5192809104919434 |
| keywords[7].display_name | Code (set theory) |
| keywords[8].id | https://openalex.org/keywords/autoregressive-model |
| keywords[8].score | 0.5020351409912109 |
| keywords[8].display_name | Autoregressive model |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.4869116544723511 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/construct |
| keywords[10].score | 0.4830820858478546 |
| keywords[10].display_name | Construct (python library) |
| keywords[11].id | https://openalex.org/keywords/task |
| keywords[11].score | 0.4506077468395233 |
| keywords[11].display_name | Task (project management) |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.4034034311771393 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/natural-language-processing |
| keywords[13].score | 0.37569910287857056 |
| keywords[13].display_name | Natural language processing |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.19477912783622742 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/psychology |
| keywords[15].score | 0.13287353515625 |
| keywords[15].display_name | Psychology |
| keywords[16].id | https://openalex.org/keywords/programming-language |
| keywords[16].score | 0.1028909981250763 |
| keywords[16].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.12270 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.12270 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.12270 |
| locations[1].id | doi:10.48550/arxiv.2307.12270 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.12270 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102915298 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-9859-721X |
| authorships[0].author.display_name | Yongkun Du |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Du, Yongkun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5080463909 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1543-6889 |
| authorships[1].author.display_name | Zhineng Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Zhineng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085282915 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0650-9564 |
| authorships[2].author.display_name | Caiyan Jia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jia, Caiyan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5034820064 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7708-7819 |
| authorships[3].author.display_name | Xiaoting Yin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yin, Xiaoting |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103082468 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0321-5675 |
| authorships[4].author.display_name | Chenxia Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Chenxia |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5010944460 |
| authorships[5].author.orcid | https://orcid.org/0009-0007-4995-5472 |
| authorships[5].author.display_name | Yuning Du |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Du, Yuning |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5047962986 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1907-8567 |
| authorships[6].author.display_name | Yu–Gang Jiang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jiang, Yu-Gang |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.12270 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Context Perception Parallel Decoder for Scene Text Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10601 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Handwritten Text Recognition Techniques |
| related_works | https://openalex.org/W2366107444, https://openalex.org/W4388145910, https://openalex.org/W2381570729, https://openalex.org/W1976205134, https://openalex.org/W4248336175, https://openalex.org/W4251972423, https://openalex.org/W2031260042, https://openalex.org/W2391445434, https://openalex.org/W1503216044, https://openalex.org/W3009369890 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.12270 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.12270 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.12270 |
| primary_location.id | pmh:oai:arXiv.org:2307.12270 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.12270 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.12270 |
| publication_date | 2023-07-23 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 43, 99, 104, 117, 142, 148 |
| abstract_inverted_index.8x | 182 |
| abstract_inverted_index.AR | 62, 70 |
| abstract_inverted_index.PD | 100 |
| abstract_inverted_index.We | 55, 146 |
| abstract_inverted_index.an | 58 |
| abstract_inverted_index.at | 198 |
| abstract_inverted_index.in | 21, 27, 42, 64, 98 |
| abstract_inverted_index.is | 197 |
| abstract_inverted_index.of | 61, 113, 150 |
| abstract_inverted_index.on | 81, 164 |
| abstract_inverted_index.to | 7, 93, 108, 121 |
| abstract_inverted_index.we | 86 |
| abstract_inverted_index.STR | 161 |
| abstract_inverted_index.all | 40 |
| abstract_inverted_index.and | 11, 66, 116, 127, 153, 167 |
| abstract_inverted_index.but | 29, 51, 77 |
| abstract_inverted_index.not | 72 |
| abstract_inverted_index.the | 19, 69, 95, 110, 123, 130, 135, 156, 172, 189 |
| abstract_inverted_index.CPPD | 102, 151, 173 |
| abstract_inverted_index.Code | 196 |
| abstract_inverted_index.STR, | 65 |
| abstract_inverted_index.They | 139 |
| abstract_inverted_index.also | 78, 154 |
| abstract_inverted_index.both | 165 |
| abstract_inverted_index.each | 114 |
| abstract_inverted_index.fast | 12 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.high | 9 |
| abstract_inverted_index.into | 159 |
| abstract_inverted_index.only | 73 |
| abstract_inverted_index.plug | 155 |
| abstract_inverted_index.slow | 31 |
| abstract_inverted_index.task | 133 |
| abstract_inverted_index.text | 1 |
| abstract_inverted_index.than | 184 |
| abstract_inverted_index.that | 68, 171 |
| abstract_inverted_index.with | 30, 137 |
| abstract_inverted_index.(STR) | 3 |
| abstract_inverted_index.Scene | 0 |
| abstract_inverted_index.URL}. | 201 |
| abstract_inverted_index.build | 141 |
| abstract_inverted_index.count | 112 |
| abstract_inverted_index.first | 56 |
| abstract_inverted_index.https | 200 |
| abstract_inverted_index.infer | 39, 109 |
| abstract_inverted_index.order | 126 |
| abstract_inverted_index.pass, | 46 |
| abstract_inverted_index.pass. | 101 |
| abstract_inverted_index.speed | 50 |
| abstract_inverted_index.study | 60 |
| abstract_inverted_index.their | 185 |
| abstract_inverted_index.while | 179 |
| abstract_inverted_index.worse | 53 |
| abstract_inverted_index.(CPPD) | 92 |
| abstract_inverted_index.attain | 8 |
| abstract_inverted_index.deduce | 122 |
| abstract_inverted_index.faster | 48, 183 |
| abstract_inverted_index.highly | 176 |
| abstract_inverted_index.models | 17, 38, 74, 152, 174, 191 |
| abstract_inverted_index.module | 107, 120 |
| abstract_inverted_index.series | 149 |
| abstract_inverted_index.single | 44 |
| abstract_inverted_index.speed. | 14, 33 |
| abstract_inverted_index.visual | 82 |
| abstract_inverted_index.Chinese | 168 |
| abstract_inverted_index.Context | 88 |
| abstract_inverted_index.Decoder | 91 |
| abstract_inverted_index.English | 166 |
| abstract_inverted_index.achieve | 175, 192 |
| abstract_inverted_index.context | 83 |
| abstract_inverted_index.decoder | 71 |
| abstract_inverted_index.devises | 103 |
| abstract_inverted_index.manner, | 24 |
| abstract_inverted_index.methods | 4 |
| abstract_inverted_index.modules | 158 |
| abstract_inverted_index.plugged | 190 |
| abstract_inverted_index.predict | 94 |
| abstract_inverted_index.present | 57 |
| abstract_inverted_index.propose | 87 |
| abstract_inverted_index.reading | 125 |
| abstract_inverted_index.running | 180 |
| abstract_inverted_index.showing | 25 |
| abstract_inverted_index.AR-based | 186 |
| abstract_inverted_index.Parallel | 90 |
| abstract_inverted_index.accuracy | 10, 28, 178, 194 |
| abstract_inverted_index.context, | 76 |
| abstract_inverted_index.context. | 145 |
| abstract_inverted_index.counting | 106 |
| abstract_inverted_index.decoding | 36, 45, 63 |
| abstract_inverted_index.discover | 67 |
| abstract_inverted_index.existing | 160 |
| abstract_inverted_index.guidance | 80 |
| abstract_inverted_index.offering | 47 |
| abstract_inverted_index.ordering | 119 |
| abstract_inverted_index.parallel | 35 |
| abstract_inverted_index.proposed | 157 |
| abstract_inverted_index.provides | 79 |
| abstract_inverted_index.sequence | 97 |
| abstract_inverted_index.together | 140 |
| abstract_inverted_index.Moreover, | 188 |
| abstract_inverted_index.accuracy. | 54 |
| abstract_inverted_index.character | 96, 105, 118, 131 |
| abstract_inverted_index.construct | 147 |
| abstract_inverted_index.decoders. | 162 |
| abstract_inverted_index.empirical | 59 |
| abstract_inverted_index.generally | 52 |
| abstract_inverted_index.implement | 18 |
| abstract_inverted_index.inference | 13, 32, 49 |
| abstract_inverted_index.struggled | 6 |
| abstract_inverted_index.(AR)-based | 16 |
| abstract_inverted_index.(PD)-based | 37 |
| abstract_inverted_index.Meanwhile, | 129 |
| abstract_inverted_index.Perception | 89 |
| abstract_inverted_index.associates | 134 |
| abstract_inverted_index.benchmarks | 169 |
| abstract_inverted_index.character, | 115 |
| abstract_inverted_index.characters | 41 |
| abstract_inverted_index.linguistic | 75 |
| abstract_inverted_index.occurrence | 111 |
| abstract_inverted_index.prediction | 132 |
| abstract_inverted_index.Experiments | 163 |
| abstract_inverted_index.characters. | 138 |
| abstract_inverted_index.competitive | 177 |
| abstract_inverted_index.demonstrate | 170 |
| abstract_inverted_index.perception. | 84 |
| abstract_inverted_index.recognition | 2, 20, 144 |
| abstract_inverted_index.significant | 193 |
| abstract_inverted_index.superiority | 26 |
| abstract_inverted_index.content-free | 124 |
| abstract_inverted_index.placeholders | 136 |
| abstract_inverted_index.Consequently, | 85 |
| abstract_inverted_index.approximately | 181 |
| abstract_inverted_index.comprehensive | 143 |
| abstract_inverted_index.counterparts. | 187 |
| abstract_inverted_index.improvements. | 195 |
| abstract_inverted_index.placeholders. | 128 |
| abstract_inverted_index.Alternatively, | 34 |
| abstract_inverted_index.Autoregressive | 15 |
| abstract_inverted_index.character-by-character | 23 |
| abstract_inverted_index.\href{https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/algorithm_rec_cppd_en.md}{this | 199 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |