Context Reinforced Neural Topic Modeling over Short Texts Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2008.04545
As one of the prevalent topic mining tools, neural topic modeling has attracted a lot of interests for the advantages of high efficiency in training and strong generalisation abilities. However, due to the lack of context in each short text, the existing neural topic models may suffer from feature sparsity on such documents. To alleviate this issue, we propose a Context Reinforced Neural Topic Model (CRNTM), whose characteristics can be summarized as follows. Firstly, by assuming that each short text covers only a few salient topics, CRNTM infers the topic for each word in a narrow range. Secondly, our model exploits pre-trained word embeddings by treating topics as multivariate Gaussian distributions or Gaussian mixture distributions in the embedding space. Extensive experiments on two benchmark datasets validate the effectiveness of the proposed model on both topic discovery and text classification.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2008.04545
- https://arxiv.org/pdf/2008.04545
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320878907
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320878907Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2008.04545Digital Object Identifier
- Title
-
Context Reinforced Neural Topic Modeling over Short TextsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-11Full publication date if available
- Authors
-
Jiachun Feng, Zusheng Zhang, Cheng Ding, Yanghui Rao, Haoran XieList of authors in order
- Landing page
-
https://arxiv.org/abs/2008.04545Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2008.04545Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2008.04545Direct OA link when available
- Concepts
-
Computer science, Context (archaeology), Salient, Word (group theory), Benchmark (surveying), Artificial intelligence, Feature (linguistics), Topic model, Embedding, Exploit, Range (aeronautics), Word embedding, Multivariate statistics, Key (lock), Machine learning, Natural language processing, Gaussian, Space (punctuation), Mathematics, Linguistics, Engineering, Geometry, Biology, Geodesy, Geography, Physics, Quantum mechanics, Aerospace engineering, Operating system, Paleontology, Computer security, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320878907 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2008.04545 |
| ids.doi | https://doi.org/10.48550/arxiv.2008.04545 |
| ids.openalex | https://openalex.org/W4320878907 |
| fwci | |
| type | preprint |
| title | Context Reinforced Neural Topic Modeling over Short Texts |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9775999784469604 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T13910 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9696999788284302 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3300 |
| topics[1].subfield.display_name | General Social Sciences |
| topics[1].display_name | Computational and Text Analysis Methods |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9660000205039978 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7609000205993652 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6672148108482361 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C2780719617 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6442865133285522 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1030752 |
| concepts[2].display_name | Salient |
| concepts[3].id | https://openalex.org/C90805587 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6255638599395752 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[3].display_name | Word (group theory) |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.596691370010376 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5966812372207642 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5457339882850647 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C171686336 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5367814898490906 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3532085 |
| concepts[7].display_name | Topic model |
| concepts[8].id | https://openalex.org/C41608201 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5113417506217957 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[8].display_name | Embedding |
| concepts[9].id | https://openalex.org/C165696696 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46731704473495483 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[9].display_name | Exploit |
| concepts[10].id | https://openalex.org/C204323151 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4645267426967621 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[10].display_name | Range (aeronautics) |
| concepts[11].id | https://openalex.org/C2777462759 |
| concepts[11].level | 3 |
| concepts[11].score | 0.45316046476364136 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q18395344 |
| concepts[11].display_name | Word embedding |
| concepts[12].id | https://openalex.org/C161584116 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4410555362701416 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[12].display_name | Multivariate statistics |
| concepts[13].id | https://openalex.org/C26517878 |
| concepts[13].level | 2 |
| concepts[13].score | 0.43122416734695435 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[13].display_name | Key (lock) |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.4284718334674835 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C204321447 |
| concepts[15].level | 1 |
| concepts[15].score | 0.42655277252197266 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[15].display_name | Natural language processing |
| concepts[16].id | https://openalex.org/C163716315 |
| concepts[16].level | 2 |
| concepts[16].score | 0.41749319434165955 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[16].display_name | Gaussian |
| concepts[17].id | https://openalex.org/C2778572836 |
| concepts[17].level | 2 |
| concepts[17].score | 0.4142114520072937 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[17].display_name | Space (punctuation) |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.11011549830436707 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.08005392551422119 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| concepts[20].id | https://openalex.org/C127413603 |
| concepts[20].level | 0 |
| concepts[20].score | 0.05436316132545471 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[20].display_name | Engineering |
| concepts[21].id | https://openalex.org/C2524010 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[21].display_name | Geometry |
| concepts[22].id | https://openalex.org/C86803240 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[22].display_name | Biology |
| concepts[23].id | https://openalex.org/C13280743 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[23].display_name | Geodesy |
| concepts[24].id | https://openalex.org/C205649164 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[24].display_name | Geography |
| concepts[25].id | https://openalex.org/C121332964 |
| concepts[25].level | 0 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[25].display_name | Physics |
| concepts[26].id | https://openalex.org/C62520636 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[26].display_name | Quantum mechanics |
| concepts[27].id | https://openalex.org/C146978453 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[27].display_name | Aerospace engineering |
| concepts[28].id | https://openalex.org/C111919701 |
| concepts[28].level | 1 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[28].display_name | Operating system |
| concepts[29].id | https://openalex.org/C151730666 |
| concepts[29].level | 1 |
| concepts[29].score | 0.0 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[29].display_name | Paleontology |
| concepts[30].id | https://openalex.org/C38652104 |
| concepts[30].level | 1 |
| concepts[30].score | 0.0 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[30].display_name | Computer security |
| concepts[31].id | https://openalex.org/C138885662 |
| concepts[31].level | 0 |
| concepts[31].score | 0.0 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[31].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7609000205993652 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.6672148108482361 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/salient |
| keywords[2].score | 0.6442865133285522 |
| keywords[2].display_name | Salient |
| keywords[3].id | https://openalex.org/keywords/word |
| keywords[3].score | 0.6255638599395752 |
| keywords[3].display_name | Word (group theory) |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.596691370010376 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5966812372207642 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5457339882850647 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/topic-model |
| keywords[7].score | 0.5367814898490906 |
| keywords[7].display_name | Topic model |
| keywords[8].id | https://openalex.org/keywords/embedding |
| keywords[8].score | 0.5113417506217957 |
| keywords[8].display_name | Embedding |
| keywords[9].id | https://openalex.org/keywords/exploit |
| keywords[9].score | 0.46731704473495483 |
| keywords[9].display_name | Exploit |
| keywords[10].id | https://openalex.org/keywords/range |
| keywords[10].score | 0.4645267426967621 |
| keywords[10].display_name | Range (aeronautics) |
| keywords[11].id | https://openalex.org/keywords/word-embedding |
| keywords[11].score | 0.45316046476364136 |
| keywords[11].display_name | Word embedding |
| keywords[12].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[12].score | 0.4410555362701416 |
| keywords[12].display_name | Multivariate statistics |
| keywords[13].id | https://openalex.org/keywords/key |
| keywords[13].score | 0.43122416734695435 |
| keywords[13].display_name | Key (lock) |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.4284718334674835 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/natural-language-processing |
| keywords[15].score | 0.42655277252197266 |
| keywords[15].display_name | Natural language processing |
| keywords[16].id | https://openalex.org/keywords/gaussian |
| keywords[16].score | 0.41749319434165955 |
| keywords[16].display_name | Gaussian |
| keywords[17].id | https://openalex.org/keywords/space |
| keywords[17].score | 0.4142114520072937 |
| keywords[17].display_name | Space (punctuation) |
| keywords[18].id | https://openalex.org/keywords/mathematics |
| keywords[18].score | 0.11011549830436707 |
| keywords[18].display_name | Mathematics |
| keywords[19].id | https://openalex.org/keywords/linguistics |
| keywords[19].score | 0.08005392551422119 |
| keywords[19].display_name | Linguistics |
| keywords[20].id | https://openalex.org/keywords/engineering |
| keywords[20].score | 0.05436316132545471 |
| keywords[20].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2008.04545 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2008.04545 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2008.04545 |
| locations[1].id | doi:10.48550/arxiv.2008.04545 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2008.04545 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101608586 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4845-424X |
| authorships[0].author.display_name | Jiachun Feng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feng, Jiachun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101930347 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zusheng Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Zusheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5046668332 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7244-3535 |
| authorships[2].author.display_name | Cheng Ding |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ding, Cheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5058291454 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1610-9599 |
| authorships[3].author.display_name | Yanghui Rao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rao, Yanghui |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5013151488 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0965-3617 |
| authorships[4].author.display_name | Haoran Xie |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xie, Haoran |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2008.04545 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Context Reinforced Neural Topic Modeling over Short Texts |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9775999784469604 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2329500892, https://openalex.org/W28991112, https://openalex.org/W2370726991, https://openalex.org/W2081900870, https://openalex.org/W2369710579, https://openalex.org/W4327728159, https://openalex.org/W4286432911, https://openalex.org/W3134737443, https://openalex.org/W3213893547, https://openalex.org/W2971288699 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2008.04545 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2008.04545 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2008.04545 |
| primary_location.id | pmh:oai:arXiv.org:2008.04545 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2008.04545 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2008.04545 |
| publication_date | 2020-08-11 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 13, 59, 82, 94 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.To | 53 |
| abstract_inverted_index.as | 71, 107 |
| abstract_inverted_index.be | 69 |
| abstract_inverted_index.by | 74, 104 |
| abstract_inverted_index.in | 23, 36, 93, 115 |
| abstract_inverted_index.of | 2, 15, 20, 34, 128 |
| abstract_inverted_index.on | 50, 121, 132 |
| abstract_inverted_index.or | 111 |
| abstract_inverted_index.to | 31 |
| abstract_inverted_index.we | 57 |
| abstract_inverted_index.and | 25, 136 |
| abstract_inverted_index.can | 68 |
| abstract_inverted_index.due | 30 |
| abstract_inverted_index.few | 83 |
| abstract_inverted_index.for | 17, 90 |
| abstract_inverted_index.has | 11 |
| abstract_inverted_index.lot | 14 |
| abstract_inverted_index.may | 45 |
| abstract_inverted_index.one | 1 |
| abstract_inverted_index.our | 98 |
| abstract_inverted_index.the | 3, 18, 32, 40, 88, 116, 126, 129 |
| abstract_inverted_index.two | 122 |
| abstract_inverted_index.both | 133 |
| abstract_inverted_index.each | 37, 77, 91 |
| abstract_inverted_index.from | 47 |
| abstract_inverted_index.high | 21 |
| abstract_inverted_index.lack | 33 |
| abstract_inverted_index.only | 81 |
| abstract_inverted_index.such | 51 |
| abstract_inverted_index.text | 79, 137 |
| abstract_inverted_index.that | 76 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.word | 92, 102 |
| abstract_inverted_index.CRNTM | 86 |
| abstract_inverted_index.Model | 64 |
| abstract_inverted_index.Topic | 63 |
| abstract_inverted_index.model | 99, 131 |
| abstract_inverted_index.short | 38, 78 |
| abstract_inverted_index.text, | 39 |
| abstract_inverted_index.topic | 5, 9, 43, 89, 134 |
| abstract_inverted_index.whose | 66 |
| abstract_inverted_index.Neural | 62 |
| abstract_inverted_index.covers | 80 |
| abstract_inverted_index.infers | 87 |
| abstract_inverted_index.issue, | 56 |
| abstract_inverted_index.mining | 6 |
| abstract_inverted_index.models | 44 |
| abstract_inverted_index.narrow | 95 |
| abstract_inverted_index.neural | 8, 42 |
| abstract_inverted_index.range. | 96 |
| abstract_inverted_index.space. | 118 |
| abstract_inverted_index.strong | 26 |
| abstract_inverted_index.suffer | 46 |
| abstract_inverted_index.tools, | 7 |
| abstract_inverted_index.topics | 106 |
| abstract_inverted_index.Context | 60 |
| abstract_inverted_index.context | 35 |
| abstract_inverted_index.feature | 48 |
| abstract_inverted_index.mixture | 113 |
| abstract_inverted_index.propose | 58 |
| abstract_inverted_index.salient | 84 |
| abstract_inverted_index.topics, | 85 |
| abstract_inverted_index.(CRNTM), | 65 |
| abstract_inverted_index.Firstly, | 73 |
| abstract_inverted_index.Gaussian | 109, 112 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.assuming | 75 |
| abstract_inverted_index.datasets | 124 |
| abstract_inverted_index.existing | 41 |
| abstract_inverted_index.exploits | 100 |
| abstract_inverted_index.follows. | 72 |
| abstract_inverted_index.modeling | 10 |
| abstract_inverted_index.proposed | 130 |
| abstract_inverted_index.sparsity | 49 |
| abstract_inverted_index.training | 24 |
| abstract_inverted_index.treating | 105 |
| abstract_inverted_index.validate | 125 |
| abstract_inverted_index.Extensive | 119 |
| abstract_inverted_index.Secondly, | 97 |
| abstract_inverted_index.alleviate | 54 |
| abstract_inverted_index.attracted | 12 |
| abstract_inverted_index.benchmark | 123 |
| abstract_inverted_index.discovery | 135 |
| abstract_inverted_index.embedding | 117 |
| abstract_inverted_index.interests | 16 |
| abstract_inverted_index.prevalent | 4 |
| abstract_inverted_index.Reinforced | 61 |
| abstract_inverted_index.abilities. | 28 |
| abstract_inverted_index.advantages | 19 |
| abstract_inverted_index.documents. | 52 |
| abstract_inverted_index.efficiency | 22 |
| abstract_inverted_index.embeddings | 103 |
| abstract_inverted_index.summarized | 70 |
| abstract_inverted_index.experiments | 120 |
| abstract_inverted_index.pre-trained | 101 |
| abstract_inverted_index.multivariate | 108 |
| abstract_inverted_index.distributions | 110, 114 |
| abstract_inverted_index.effectiveness | 127 |
| abstract_inverted_index.generalisation | 27 |
| abstract_inverted_index.characteristics | 67 |
| abstract_inverted_index.classification. | 138 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |