Continual Auxiliary Task Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.11133
Learning auxiliary tasks, such as multiple predictions about the world, can provide many benefits to reinforcement learning systems. A variety of off-policy learning algorithms have been developed to learn such predictions, but as yet there is little work on how to adapt the behavior to gather useful data for those off-policy predictions. In this work, we investigate a reinforcement learning system designed to learn a collection of auxiliary tasks, with a behavior policy learning to take actions to improve those auxiliary predictions. We highlight the inherent non-stationarity in this continual auxiliary task learning problem, for both prediction learners and the behavior learner. We develop an algorithm based on successor features that facilitates tracking under non-stationary rewards, and prove the separation into learning successor features and rewards provides convergence rate improvements. We conduct an in-depth study into the resulting multi-prediction learning system.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.11133
- https://arxiv.org/pdf/2202.11133
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225554067
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225554067Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.11133Digital Object Identifier
- Title
-
Continual Auxiliary Task LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-22Full publication date if available
- Authors
-
Matthew J. McLeod, Chunlok Lo, Matthew Schlegel, Andrew Jacobsen, Raksha Kumaraswamy, Martha White, Adam WhiteList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.11133Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.11133Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.11133Direct OA link when available
- Concepts
-
Successor cardinal, Reinforcement learning, Computer science, Task (project management), Artificial intelligence, Machine learning, Variety (cybernetics), Convergence (economics), Multi-task learning, Error-driven learning, Policy learning, Active learning (machine learning), Work (physics), Engineering, Mathematics, Economics, Mathematical analysis, Systems engineering, Mechanical engineering, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225554067 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.11133 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.11133 |
| ids.openalex | https://openalex.org/W4225554067 |
| fwci | |
| type | preprint |
| title | Continual Auxiliary Task Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T12101 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9732000231742859 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Advanced Bandit Algorithms Research |
| topics[2].id | https://openalex.org/T12761 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9553999900817871 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Data Stream Mining Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C75306776 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8832772970199585 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7632662 |
| concepts[0].display_name | Successor cardinal |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8307070732116699 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7245816588401794 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7157648205757141 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6165913939476013 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6077013611793518 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C136197465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6029906868934631 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[6].display_name | Variety (cybernetics) |
| concepts[7].id | https://openalex.org/C2777303404 |
| concepts[7].level | 2 |
| concepts[7].score | 0.505542516708374 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[7].display_name | Convergence (economics) |
| concepts[8].id | https://openalex.org/C28006648 |
| concepts[8].level | 3 |
| concepts[8].score | 0.47843649983406067 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6934509 |
| concepts[8].display_name | Multi-task learning |
| concepts[9].id | https://openalex.org/C47932503 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4734330177307129 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5395689 |
| concepts[9].display_name | Error-driven learning |
| concepts[10].id | https://openalex.org/C2779436431 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4610942602157593 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30672407 |
| concepts[10].display_name | Policy learning |
| concepts[11].id | https://openalex.org/C77967617 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42041832208633423 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q4677561 |
| concepts[11].display_name | Active learning (machine learning) |
| concepts[12].id | https://openalex.org/C18762648 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41090887784957886 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q42213 |
| concepts[12].display_name | Work (physics) |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09419843554496765 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07778623700141907 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C201995342 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[17].display_name | Systems engineering |
| concepts[18].id | https://openalex.org/C78519656 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[18].display_name | Mechanical engineering |
| concepts[19].id | https://openalex.org/C50522688 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[19].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/successor-cardinal |
| keywords[0].score | 0.8832772970199585 |
| keywords[0].display_name | Successor cardinal |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.8307070732116699 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7245816588401794 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.7157648205757141 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6165913939476013 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.6077013611793518 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/variety |
| keywords[6].score | 0.6029906868934631 |
| keywords[6].display_name | Variety (cybernetics) |
| keywords[7].id | https://openalex.org/keywords/convergence |
| keywords[7].score | 0.505542516708374 |
| keywords[7].display_name | Convergence (economics) |
| keywords[8].id | https://openalex.org/keywords/multi-task-learning |
| keywords[8].score | 0.47843649983406067 |
| keywords[8].display_name | Multi-task learning |
| keywords[9].id | https://openalex.org/keywords/error-driven-learning |
| keywords[9].score | 0.4734330177307129 |
| keywords[9].display_name | Error-driven learning |
| keywords[10].id | https://openalex.org/keywords/policy-learning |
| keywords[10].score | 0.4610942602157593 |
| keywords[10].display_name | Policy learning |
| keywords[11].id | https://openalex.org/keywords/active-learning |
| keywords[11].score | 0.42041832208633423 |
| keywords[11].display_name | Active learning (machine learning) |
| keywords[12].id | https://openalex.org/keywords/work |
| keywords[12].score | 0.41090887784957886 |
| keywords[12].display_name | Work (physics) |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.09419843554496765 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.07778623700141907 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.11133 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.11133 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.11133 |
| locations[1].id | doi:10.48550/arxiv.2202.11133 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.11133 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5057878187 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5540-916X |
| authorships[0].author.display_name | Matthew J. McLeod |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | McLeod, Matthew |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032244109 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chunlok Lo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lo, Chunlok |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5062015538 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Matthew Schlegel |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Schlegel, Matthew |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5046896574 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Andrew Jacobsen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jacobsen, Andrew |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5021470452 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Raksha Kumaraswamy |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kumaraswamy, Raksha |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101613484 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5356-2950 |
| authorships[5].author.display_name | Martha White |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | White, Martha |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5108583544 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Adam White |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | White, Adam |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.11133 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Continual Auxiliary Task Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| related_works | https://openalex.org/W2473542051, https://openalex.org/W3123320268, https://openalex.org/W2994519609, https://openalex.org/W2726593096, https://openalex.org/W2054269721, https://openalex.org/W4206150535, https://openalex.org/W4289666755, https://openalex.org/W3130131611, https://openalex.org/W2964276041, https://openalex.org/W2552225040 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.11133 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.11133 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.11133 |
| primary_location.id | pmh:oai:arXiv.org:2202.11133 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.11133 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.11133 |
| publication_date | 2022-02-22 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 18 |
| abstract_inverted_index.a | 57, 64, 70 |
| abstract_inverted_index.In | 52 |
| abstract_inverted_index.We | 82, 102, 130 |
| abstract_inverted_index.an | 104, 132 |
| abstract_inverted_index.as | 4, 32 |
| abstract_inverted_index.in | 87 |
| abstract_inverted_index.is | 35 |
| abstract_inverted_index.of | 20, 66 |
| abstract_inverted_index.on | 38, 107 |
| abstract_inverted_index.to | 14, 27, 40, 44, 62, 74, 77 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.and | 98, 116, 124 |
| abstract_inverted_index.but | 31 |
| abstract_inverted_index.can | 10 |
| abstract_inverted_index.for | 48, 94 |
| abstract_inverted_index.how | 39 |
| abstract_inverted_index.the | 8, 42, 84, 99, 118, 136 |
| abstract_inverted_index.yet | 33 |
| abstract_inverted_index.been | 25 |
| abstract_inverted_index.both | 95 |
| abstract_inverted_index.data | 47 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.into | 120, 135 |
| abstract_inverted_index.many | 12 |
| abstract_inverted_index.rate | 128 |
| abstract_inverted_index.such | 3, 29 |
| abstract_inverted_index.take | 75 |
| abstract_inverted_index.task | 91 |
| abstract_inverted_index.that | 110 |
| abstract_inverted_index.this | 53, 88 |
| abstract_inverted_index.with | 69 |
| abstract_inverted_index.work | 37 |
| abstract_inverted_index.about | 7 |
| abstract_inverted_index.adapt | 41 |
| abstract_inverted_index.based | 106 |
| abstract_inverted_index.learn | 28, 63 |
| abstract_inverted_index.prove | 117 |
| abstract_inverted_index.study | 134 |
| abstract_inverted_index.there | 34 |
| abstract_inverted_index.those | 49, 79 |
| abstract_inverted_index.under | 113 |
| abstract_inverted_index.work, | 54 |
| abstract_inverted_index.gather | 45 |
| abstract_inverted_index.little | 36 |
| abstract_inverted_index.policy | 72 |
| abstract_inverted_index.system | 60 |
| abstract_inverted_index.tasks, | 2, 68 |
| abstract_inverted_index.useful | 46 |
| abstract_inverted_index.world, | 9 |
| abstract_inverted_index.actions | 76 |
| abstract_inverted_index.conduct | 131 |
| abstract_inverted_index.develop | 103 |
| abstract_inverted_index.improve | 78 |
| abstract_inverted_index.provide | 11 |
| abstract_inverted_index.rewards | 125 |
| abstract_inverted_index.system. | 140 |
| abstract_inverted_index.variety | 19 |
| abstract_inverted_index.Learning | 0 |
| abstract_inverted_index.behavior | 43, 71, 100 |
| abstract_inverted_index.benefits | 13 |
| abstract_inverted_index.designed | 61 |
| abstract_inverted_index.features | 109, 123 |
| abstract_inverted_index.in-depth | 133 |
| abstract_inverted_index.inherent | 85 |
| abstract_inverted_index.learner. | 101 |
| abstract_inverted_index.learners | 97 |
| abstract_inverted_index.learning | 16, 22, 59, 73, 92, 121, 139 |
| abstract_inverted_index.multiple | 5 |
| abstract_inverted_index.problem, | 93 |
| abstract_inverted_index.provides | 126 |
| abstract_inverted_index.rewards, | 115 |
| abstract_inverted_index.systems. | 17 |
| abstract_inverted_index.tracking | 112 |
| abstract_inverted_index.algorithm | 105 |
| abstract_inverted_index.auxiliary | 1, 67, 80, 90 |
| abstract_inverted_index.continual | 89 |
| abstract_inverted_index.developed | 26 |
| abstract_inverted_index.highlight | 83 |
| abstract_inverted_index.resulting | 137 |
| abstract_inverted_index.successor | 108, 122 |
| abstract_inverted_index.algorithms | 23 |
| abstract_inverted_index.collection | 65 |
| abstract_inverted_index.off-policy | 21, 50 |
| abstract_inverted_index.prediction | 96 |
| abstract_inverted_index.separation | 119 |
| abstract_inverted_index.convergence | 127 |
| abstract_inverted_index.facilitates | 111 |
| abstract_inverted_index.investigate | 56 |
| abstract_inverted_index.predictions | 6 |
| abstract_inverted_index.predictions, | 30 |
| abstract_inverted_index.predictions. | 51, 81 |
| abstract_inverted_index.improvements. | 129 |
| abstract_inverted_index.reinforcement | 15, 58 |
| abstract_inverted_index.non-stationary | 114 |
| abstract_inverted_index.multi-prediction | 138 |
| abstract_inverted_index.non-stationarity | 86 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |