Continual few-shot patch-based learning for anime-style colorization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s41095-024-0414-4
The automatic colorization of anime line drawings is a challenging problem in production pipelines. Recent advances in deep neural networks have addressed this problem; however, collectingmany images of colorization targets in novel anime work before the colorization process starts leads to chicken-and-egg problems and has become an obstacle to using them in production pipelines. To overcome this obstacle, we propose a new patch-based learning method for few-shot anime-style colorization. The learning method adopts an efficient patch sampling technique with position embedding according to the characteristics of anime line drawings. We also present a continuous learning strategy that continuously updates our colorization model using new samples colorized by human artists. The advantage of our method is that it can learn our colorization model from scratch or pre-trained weights using only a few pre- and post-colorized line drawings that are created by artists in their usual colorization work. Therefore, our method can be easily incorporated within existing production pipelines. We quantitatively demonstrate that our colorizationmethod outperforms state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s41095-024-0414-4
- https://link.springer.com/content/pdf/10.1007/s41095-024-0414-4.pdf
- OA Status
- diamond
- Cited By
- 3
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400465956
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400465956Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s41095-024-0414-4Digital Object Identifier
- Title
-
Continual few-shot patch-based learning for anime-style colorizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-09Full publication date if available
- Authors
-
Akinobu Maejima, Seitaro Shinagawa, Hiroyuki Kubo, Takuya Funatomi, Tatsuo Yotsukura, Satoshi Nakamura, Yasuhiro MukaigawaList of authors in order
- Landing page
-
https://doi.org/10.1007/s41095-024-0414-4Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s41095-024-0414-4.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s41095-024-0414-4.pdfDirect OA link when available
- Concepts
-
Anime, Computer science, Obstacle, Artificial intelligence, Embedding, Scratch, Line (geometry), Deep learning, Process (computing), Style (visual arts), Graphics, Computer vision, Special effects, Computer graphics (images), Visual arts, Art, Mathematics, Geometry, Operating system, Law, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400465956 |
|---|---|
| doi | https://doi.org/10.1007/s41095-024-0414-4 |
| ids.doi | https://doi.org/10.1007/s41095-024-0414-4 |
| ids.openalex | https://openalex.org/W4400465956 |
| fwci | 1.59047268 |
| type | article |
| title | Continual few-shot patch-based learning for anime-style colorization |
| biblio.issue | 4 |
| biblio.volume | 10 |
| biblio.last_page | 723 |
| biblio.first_page | 705 |
| topics[0].id | https://openalex.org/T11439 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9912999868392944 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Analysis and Summarization |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9905999898910522 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[2].id | https://openalex.org/T12290 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9836999773979187 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Human Motion and Animation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C118130439 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9312145113945007 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11425 |
| concepts[0].display_name | Anime |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7333895564079285 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776650193 |
| concepts[2].level | 2 |
| concepts[2].score | 0.722216784954071 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q264661 |
| concepts[2].display_name | Obstacle |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6106393933296204 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41608201 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5363150238990784 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[4].display_name | Embedding |
| concepts[5].id | https://openalex.org/C2781235140 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5051692128181458 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q275131 |
| concepts[5].display_name | Scratch |
| concepts[6].id | https://openalex.org/C198352243 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48871350288391113 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q37105 |
| concepts[6].display_name | Line (geometry) |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4688257873058319 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C98045186 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46317628026008606 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[8].display_name | Process (computing) |
| concepts[9].id | https://openalex.org/C2776445246 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4240879714488983 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1792644 |
| concepts[9].display_name | Style (visual arts) |
| concepts[10].id | https://openalex.org/C21442007 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4237949848175049 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1027879 |
| concepts[10].display_name | Graphics |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4144546389579773 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C3020113354 |
| concepts[12].level | 2 |
| concepts[12].score | 0.41389259696006775 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q381243 |
| concepts[12].display_name | Special effects |
| concepts[13].id | https://openalex.org/C121684516 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3768687844276428 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[13].display_name | Computer graphics (images) |
| concepts[14].id | https://openalex.org/C153349607 |
| concepts[14].level | 1 |
| concepts[14].score | 0.18756943941116333 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[14].display_name | Visual arts |
| concepts[15].id | https://openalex.org/C142362112 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1463102102279663 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[15].display_name | Art |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.09844115376472473 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| concepts[19].id | https://openalex.org/C199539241 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[19].display_name | Law |
| concepts[20].id | https://openalex.org/C17744445 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[20].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/anime |
| keywords[0].score | 0.9312145113945007 |
| keywords[0].display_name | Anime |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7333895564079285 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/obstacle |
| keywords[2].score | 0.722216784954071 |
| keywords[2].display_name | Obstacle |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6106393933296204 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/embedding |
| keywords[4].score | 0.5363150238990784 |
| keywords[4].display_name | Embedding |
| keywords[5].id | https://openalex.org/keywords/scratch |
| keywords[5].score | 0.5051692128181458 |
| keywords[5].display_name | Scratch |
| keywords[6].id | https://openalex.org/keywords/line |
| keywords[6].score | 0.48871350288391113 |
| keywords[6].display_name | Line (geometry) |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.4688257873058319 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.46317628026008606 |
| keywords[8].display_name | Process (computing) |
| keywords[9].id | https://openalex.org/keywords/style |
| keywords[9].score | 0.4240879714488983 |
| keywords[9].display_name | Style (visual arts) |
| keywords[10].id | https://openalex.org/keywords/graphics |
| keywords[10].score | 0.4237949848175049 |
| keywords[10].display_name | Graphics |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.4144546389579773 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/special-effects |
| keywords[12].score | 0.41389259696006775 |
| keywords[12].display_name | Special effects |
| keywords[13].id | https://openalex.org/keywords/computer-graphics |
| keywords[13].score | 0.3768687844276428 |
| keywords[13].display_name | Computer graphics (images) |
| keywords[14].id | https://openalex.org/keywords/visual-arts |
| keywords[14].score | 0.18756943941116333 |
| keywords[14].display_name | Visual arts |
| keywords[15].id | https://openalex.org/keywords/art |
| keywords[15].score | 0.1463102102279663 |
| keywords[15].display_name | Art |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.09844115376472473 |
| keywords[16].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1007/s41095-024-0414-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2487656537 |
| locations[0].source.issn | 2096-0433, 2096-0662 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2096-0433 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Computational Visual Media |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s41095-024-0414-4.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computational Visual Media |
| locations[0].landing_page_url | https://doi.org/10.1007/s41095-024-0414-4 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5082120612 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8005-9218 |
| authorships[0].author.display_name | Akinobu Maejima |
| authorships[0].affiliations[0].raw_affiliation_string | The Research and Development Division, OLM Digital, Inc., Advanced Research Group, IMAGICA GROUP, Tokyo, 1540023, Japan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Akinobu Maejima |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The Research and Development Division, OLM Digital, Inc., Advanced Research Group, IMAGICA GROUP, Tokyo, 1540023, Japan |
| authorships[1].author.id | https://openalex.org/A5062788375 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5329-5170 |
| authorships[1].author.display_name | Seitaro Shinagawa |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I75917431 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 6300192, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I75917431 |
| authorships[1].institutions[0].ror | https://ror.org/05bhada84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I75917431 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Nara Institute of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Seitaro Shinagawa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 6300192, Japan |
| authorships[2].author.id | https://openalex.org/A5024810825 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Hiroyuki Kubo |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I159385669 |
| authorships[2].affiliations[0].raw_affiliation_string | Graduate School of Informatics, Chiba University, Chiba, 2638522, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I159385669 |
| authorships[2].institutions[0].ror | https://ror.org/01hjzeq58 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I159385669 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Chiba University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hiroyuki Kubo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Graduate School of Informatics, Chiba University, Chiba, 2638522, Japan |
| authorships[3].author.id | https://openalex.org/A5089280934 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5588-5932 |
| authorships[3].author.display_name | Takuya Funatomi |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I75917431 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 6300192, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I75917431 |
| authorships[3].institutions[0].ror | https://ror.org/05bhada84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I75917431 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Nara Institute of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Takuya Funatomi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 6300192, Japan |
| authorships[4].author.id | https://openalex.org/A5060687450 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4091-5905 |
| authorships[4].author.display_name | Tatsuo Yotsukura |
| authorships[4].affiliations[0].raw_affiliation_string | The Research and Development Division, OLM Digital, Inc., Advanced Research Group, IMAGICA GROUP, Tokyo, 1540023, Japan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tatsuo Yotsukura |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Research and Development Division, OLM Digital, Inc., Advanced Research Group, IMAGICA GROUP, Tokyo, 1540023, Japan |
| authorships[5].author.id | https://openalex.org/A5020994673 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6956-3803 |
| authorships[5].author.display_name | Satoshi Nakamura |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I75917431 |
| authorships[5].affiliations[0].raw_affiliation_string | Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 6300192, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I75917431 |
| authorships[5].institutions[0].ror | https://ror.org/05bhada84 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I75917431 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Nara Institute of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Satoshi Nakamura |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 6300192, Japan |
| authorships[6].author.id | https://openalex.org/A5045819127 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8689-3724 |
| authorships[6].author.display_name | Yasuhiro Mukaigawa |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I75917431 |
| authorships[6].affiliations[0].raw_affiliation_string | Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 6300192, Japan |
| authorships[6].institutions[0].id | https://openalex.org/I75917431 |
| authorships[6].institutions[0].ror | https://ror.org/05bhada84 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I75917431 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | Nara Institute of Science and Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yasuhiro Mukaigawa |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 6300192, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s41095-024-0414-4.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Continual few-shot patch-based learning for anime-style colorization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T21:42:39.735039 |
| primary_topic.id | https://openalex.org/T11439 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9912999868392944 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Analysis and Summarization |
| related_works | https://openalex.org/W2075421999, https://openalex.org/W4241725891, https://openalex.org/W4247978692, https://openalex.org/W592941694, https://openalex.org/W4200085573, https://openalex.org/W4296571029, https://openalex.org/W2098776115, https://openalex.org/W4248856211, https://openalex.org/W2270259880, https://openalex.org/W2315092248 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s41095-024-0414-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2487656537 |
| best_oa_location.source.issn | 2096-0433, 2096-0662 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2096-0433 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Computational Visual Media |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s41095-024-0414-4.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computational Visual Media |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s41095-024-0414-4 |
| primary_location.id | doi:10.1007/s41095-024-0414-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2487656537 |
| primary_location.source.issn | 2096-0433, 2096-0662 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2096-0433 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Computational Visual Media |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s41095-024-0414-4.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computational Visual Media |
| primary_location.landing_page_url | https://doi.org/10.1007/s41095-024-0414-4 |
| publication_date | 2024-07-09 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4367368228, https://openalex.org/W2471171957, https://openalex.org/W2903117770, https://openalex.org/W3048537404, https://openalex.org/W3042885582, https://openalex.org/W2016922058, https://openalex.org/W1993120651, https://openalex.org/W4210445907, https://openalex.org/W2186222003, https://openalex.org/W2136154655, https://openalex.org/W2139226296, https://openalex.org/W2294092488, https://openalex.org/W2612063021, https://openalex.org/W4234552385, https://openalex.org/W2902318149, https://openalex.org/W2074346721, https://openalex.org/W6679388247, https://openalex.org/W4286611080, https://openalex.org/W4205848055 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 9, 61, 93, 130 |
| abstract_inverted_index.To | 55 |
| abstract_inverted_index.We | 90, 158 |
| abstract_inverted_index.an | 47, 74 |
| abstract_inverted_index.be | 151 |
| abstract_inverted_index.by | 107, 140 |
| abstract_inverted_index.in | 12, 17, 31, 52, 142 |
| abstract_inverted_index.is | 8, 115 |
| abstract_inverted_index.it | 117 |
| abstract_inverted_index.of | 4, 28, 86, 112 |
| abstract_inverted_index.or | 125 |
| abstract_inverted_index.to | 41, 49, 83 |
| abstract_inverted_index.we | 59 |
| abstract_inverted_index.The | 1, 70, 110 |
| abstract_inverted_index.and | 44, 133 |
| abstract_inverted_index.are | 138 |
| abstract_inverted_index.can | 118, 150 |
| abstract_inverted_index.few | 131 |
| abstract_inverted_index.for | 66 |
| abstract_inverted_index.has | 45 |
| abstract_inverted_index.new | 62, 104 |
| abstract_inverted_index.our | 100, 113, 120, 148, 162 |
| abstract_inverted_index.the | 36, 84 |
| abstract_inverted_index.also | 91 |
| abstract_inverted_index.deep | 18 |
| abstract_inverted_index.from | 123 |
| abstract_inverted_index.have | 21 |
| abstract_inverted_index.line | 6, 88, 135 |
| abstract_inverted_index.only | 129 |
| abstract_inverted_index.pre- | 132 |
| abstract_inverted_index.that | 97, 116, 137, 161 |
| abstract_inverted_index.them | 51 |
| abstract_inverted_index.this | 23, 57 |
| abstract_inverted_index.with | 79 |
| abstract_inverted_index.work | 34 |
| abstract_inverted_index.anime | 5, 33, 87 |
| abstract_inverted_index.human | 108 |
| abstract_inverted_index.leads | 40 |
| abstract_inverted_index.learn | 119 |
| abstract_inverted_index.model | 102, 122 |
| abstract_inverted_index.novel | 32 |
| abstract_inverted_index.patch | 76 |
| abstract_inverted_index.their | 143 |
| abstract_inverted_index.using | 50, 103, 128 |
| abstract_inverted_index.usual | 144 |
| abstract_inverted_index.work. | 146 |
| abstract_inverted_index.Recent | 15 |
| abstract_inverted_index.adopts | 73 |
| abstract_inverted_index.become | 46 |
| abstract_inverted_index.before | 35 |
| abstract_inverted_index.easily | 152 |
| abstract_inverted_index.images | 27 |
| abstract_inverted_index.method | 65, 72, 114, 149 |
| abstract_inverted_index.neural | 19 |
| abstract_inverted_index.starts | 39 |
| abstract_inverted_index.within | 154 |
| abstract_inverted_index.artists | 141 |
| abstract_inverted_index.created | 139 |
| abstract_inverted_index.present | 92 |
| abstract_inverted_index.problem | 11 |
| abstract_inverted_index.process | 38 |
| abstract_inverted_index.propose | 60 |
| abstract_inverted_index.samples | 105 |
| abstract_inverted_index.scratch | 124 |
| abstract_inverted_index.targets | 30 |
| abstract_inverted_index.updates | 99 |
| abstract_inverted_index.weights | 127 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.advances | 16 |
| abstract_inverted_index.artists. | 109 |
| abstract_inverted_index.drawings | 7, 136 |
| abstract_inverted_index.existing | 155 |
| abstract_inverted_index.few-shot | 67 |
| abstract_inverted_index.however, | 25 |
| abstract_inverted_index.learning | 64, 71, 95 |
| abstract_inverted_index.methods. | 166 |
| abstract_inverted_index.networks | 20 |
| abstract_inverted_index.obstacle | 48 |
| abstract_inverted_index.overcome | 56 |
| abstract_inverted_index.position | 80 |
| abstract_inverted_index.problem; | 24 |
| abstract_inverted_index.problems | 43 |
| abstract_inverted_index.sampling | 77 |
| abstract_inverted_index.strategy | 96 |
| abstract_inverted_index.according | 82 |
| abstract_inverted_index.addressed | 22 |
| abstract_inverted_index.advantage | 111 |
| abstract_inverted_index.automatic | 2 |
| abstract_inverted_index.colorized | 106 |
| abstract_inverted_index.drawings. | 89 |
| abstract_inverted_index.efficient | 75 |
| abstract_inverted_index.embedding | 81 |
| abstract_inverted_index.obstacle, | 58 |
| abstract_inverted_index.technique | 78 |
| abstract_inverted_index.Therefore, | 147 |
| abstract_inverted_index.continuous | 94 |
| abstract_inverted_index.pipelines. | 14, 54, 157 |
| abstract_inverted_index.production | 13, 53, 156 |
| abstract_inverted_index.anime-style | 68 |
| abstract_inverted_index.challenging | 10 |
| abstract_inverted_index.demonstrate | 160 |
| abstract_inverted_index.outperforms | 164 |
| abstract_inverted_index.patch-based | 63 |
| abstract_inverted_index.pre-trained | 126 |
| abstract_inverted_index.colorization | 3, 29, 37, 101, 121, 145 |
| abstract_inverted_index.continuously | 98 |
| abstract_inverted_index.incorporated | 153 |
| abstract_inverted_index.colorization. | 69 |
| abstract_inverted_index.collectingmany | 26 |
| abstract_inverted_index.post-colorized | 134 |
| abstract_inverted_index.quantitatively | 159 |
| abstract_inverted_index.characteristics | 85 |
| abstract_inverted_index.chicken-and-egg | 42 |
| abstract_inverted_index.state-of-the-art | 165 |
| abstract_inverted_index.colorizationmethod | 163 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.77596785 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |