Continual Learning for Temporal-Sensitive Question Answering Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.12470
In this study, we explore an emerging research area of Continual Learning for Temporal Sensitive Question Answering (CLTSQA). Previous research has primarily focused on Temporal Sensitive Question Answering (TSQA), often overlooking the unpredictable nature of future events. In real-world applications, it's crucial for models to continually acquire knowledge over time, rather than relying on a static, complete dataset. Our paper investigates strategies that enable models to adapt to the ever-evolving information landscape, thereby addressing the challenges inherent in CLTSQA. To support our research, we first create a novel dataset, divided into five subsets, designed specifically for various stages of continual learning. We then propose a training framework for CLTSQA that integrates temporal memory replay and temporal contrastive learning. Our experimental results highlight two significant insights: First, the CLTSQA task introduces unique challenges for existing models. Second, our proposed framework effectively navigates these challenges, resulting in improved performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.12470
- https://arxiv.org/pdf/2407.12470
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402345834
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402345834Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.12470Digital Object Identifier
- Title
-
Continual Learning for Temporal-Sensitive Question AnsweringWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-17Full publication date if available
- Authors
-
Wanqi Yang, Yunqiu Xu, Yanda Li, Kunze Wang, Binbin Huang, Ling ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.12470Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.12470Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.12470Direct OA link when available
- Concepts
-
Question answering, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402345834 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.12470 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.12470 |
| ids.openalex | https://openalex.org/W4402345834 |
| fwci | |
| type | preprint |
| title | Continual Learning for Temporal-Sensitive Question Answering |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.978600025177002 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T12031 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9519000053405762 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Speech and dialogue systems |
| topics[2].id | https://openalex.org/T10201 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9491000175476074 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech Recognition and Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C44291984 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6465508341789246 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1074173 |
| concepts[0].display_name | Question answering |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4717501103878021 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.33596715331077576 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/question-answering |
| keywords[0].score | 0.6465508341789246 |
| keywords[0].display_name | Question answering |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4717501103878021 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.33596715331077576 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.12470 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.12470 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.12470 |
| locations[1].id | doi:10.48550/arxiv.2407.12470 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.12470 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066164174 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4642-2570 |
| authorships[0].author.display_name | Wanqi Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Wanqi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057243649 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1721-764X |
| authorships[1].author.display_name | Yunqiu Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Yunqiu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5033512723 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9439-202X |
| authorships[2].author.display_name | Yanda Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Yanda |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5037320179 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Kunze Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Kunze |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5036291051 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2681-5537 |
| authorships[4].author.display_name | Binbin Huang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Huang, Binbin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100411084 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6074-523X |
| authorships[5].author.display_name | Ling Chen |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chen, Ling |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.12470 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Continual Learning for Temporal-Sensitive Question Answering |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.978600025177002 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2384605597, https://openalex.org/W2387743295, https://openalex.org/W2115758952, https://openalex.org/W3082787378, https://openalex.org/W2136007095, https://openalex.org/W2366230879, https://openalex.org/W3208425359, https://openalex.org/W2349927912 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.12470 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.12470 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.12470 |
| primary_location.id | pmh:oai:arXiv.org:2407.12470 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.12470 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.12470 |
| publication_date | 2024-07-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 54, 86, 104 |
| abstract_inverted_index.In | 0, 37 |
| abstract_inverted_index.To | 79 |
| abstract_inverted_index.We | 101 |
| abstract_inverted_index.an | 5 |
| abstract_inverted_index.in | 77, 144 |
| abstract_inverted_index.of | 9, 34, 98 |
| abstract_inverted_index.on | 23, 53 |
| abstract_inverted_index.to | 44, 65, 67 |
| abstract_inverted_index.we | 3, 83 |
| abstract_inverted_index.Our | 58, 118 |
| abstract_inverted_index.and | 114 |
| abstract_inverted_index.for | 12, 42, 95, 107, 132 |
| abstract_inverted_index.has | 20 |
| abstract_inverted_index.our | 81, 136 |
| abstract_inverted_index.the | 31, 68, 74, 126 |
| abstract_inverted_index.two | 122 |
| abstract_inverted_index.area | 8 |
| abstract_inverted_index.five | 91 |
| abstract_inverted_index.into | 90 |
| abstract_inverted_index.it's | 40 |
| abstract_inverted_index.over | 48 |
| abstract_inverted_index.task | 128 |
| abstract_inverted_index.than | 51 |
| abstract_inverted_index.that | 62, 109 |
| abstract_inverted_index.then | 102 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.adapt | 66 |
| abstract_inverted_index.first | 84 |
| abstract_inverted_index.novel | 87 |
| abstract_inverted_index.often | 29 |
| abstract_inverted_index.paper | 59 |
| abstract_inverted_index.these | 141 |
| abstract_inverted_index.time, | 49 |
| abstract_inverted_index.CLTSQA | 108, 127 |
| abstract_inverted_index.First, | 125 |
| abstract_inverted_index.create | 85 |
| abstract_inverted_index.enable | 63 |
| abstract_inverted_index.future | 35 |
| abstract_inverted_index.memory | 112 |
| abstract_inverted_index.models | 43, 64 |
| abstract_inverted_index.nature | 33 |
| abstract_inverted_index.rather | 50 |
| abstract_inverted_index.replay | 113 |
| abstract_inverted_index.stages | 97 |
| abstract_inverted_index.study, | 2 |
| abstract_inverted_index.unique | 130 |
| abstract_inverted_index.(TSQA), | 28 |
| abstract_inverted_index.CLTSQA. | 78 |
| abstract_inverted_index.Second, | 135 |
| abstract_inverted_index.acquire | 46 |
| abstract_inverted_index.crucial | 41 |
| abstract_inverted_index.divided | 89 |
| abstract_inverted_index.events. | 36 |
| abstract_inverted_index.explore | 4 |
| abstract_inverted_index.focused | 22 |
| abstract_inverted_index.models. | 134 |
| abstract_inverted_index.propose | 103 |
| abstract_inverted_index.relying | 52 |
| abstract_inverted_index.results | 120 |
| abstract_inverted_index.static, | 55 |
| abstract_inverted_index.support | 80 |
| abstract_inverted_index.thereby | 72 |
| abstract_inverted_index.various | 96 |
| abstract_inverted_index.Learning | 11 |
| abstract_inverted_index.Previous | 18 |
| abstract_inverted_index.Question | 15, 26 |
| abstract_inverted_index.Temporal | 13, 24 |
| abstract_inverted_index.complete | 56 |
| abstract_inverted_index.dataset, | 88 |
| abstract_inverted_index.dataset. | 57 |
| abstract_inverted_index.designed | 93 |
| abstract_inverted_index.emerging | 6 |
| abstract_inverted_index.existing | 133 |
| abstract_inverted_index.improved | 145 |
| abstract_inverted_index.inherent | 76 |
| abstract_inverted_index.proposed | 137 |
| abstract_inverted_index.research | 7, 19 |
| abstract_inverted_index.subsets, | 92 |
| abstract_inverted_index.temporal | 111, 115 |
| abstract_inverted_index.training | 105 |
| abstract_inverted_index.(CLTSQA). | 17 |
| abstract_inverted_index.Answering | 16, 27 |
| abstract_inverted_index.Continual | 10 |
| abstract_inverted_index.Sensitive | 14, 25 |
| abstract_inverted_index.continual | 99 |
| abstract_inverted_index.framework | 106, 138 |
| abstract_inverted_index.highlight | 121 |
| abstract_inverted_index.insights: | 124 |
| abstract_inverted_index.knowledge | 47 |
| abstract_inverted_index.learning. | 100, 117 |
| abstract_inverted_index.navigates | 140 |
| abstract_inverted_index.primarily | 21 |
| abstract_inverted_index.research, | 82 |
| abstract_inverted_index.resulting | 143 |
| abstract_inverted_index.addressing | 73 |
| abstract_inverted_index.challenges | 75, 131 |
| abstract_inverted_index.integrates | 110 |
| abstract_inverted_index.introduces | 129 |
| abstract_inverted_index.landscape, | 71 |
| abstract_inverted_index.real-world | 38 |
| abstract_inverted_index.strategies | 61 |
| abstract_inverted_index.challenges, | 142 |
| abstract_inverted_index.continually | 45 |
| abstract_inverted_index.contrastive | 116 |
| abstract_inverted_index.effectively | 139 |
| abstract_inverted_index.information | 70 |
| abstract_inverted_index.overlooking | 30 |
| abstract_inverted_index.significant | 123 |
| abstract_inverted_index.experimental | 119 |
| abstract_inverted_index.investigates | 60 |
| abstract_inverted_index.performance. | 146 |
| abstract_inverted_index.specifically | 94 |
| abstract_inverted_index.applications, | 39 |
| abstract_inverted_index.ever-evolving | 69 |
| abstract_inverted_index.unpredictable | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |