Continual Learning with Neuromorphic Computing: Theories, Methods, and Applications Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.09218
To adapt to real-world dynamics, intelligent systems need to assimilate new knowledge without catastrophic forgetting, where learning new tasks leads to a degradation in performance on old tasks. To address this, continual learning concept is proposed for enabling autonomous systems to acquire new knowledge and dynamically adapt to changing environments. Specifically, energy-efficient continual learning is needed to ensure the functionality of autonomous systems under tight compute and memory resource budgets (i.e., so-called autonomous embedded systems). Neuromorphic computing, with brain-inspired Spiking Neural Networks (SNNs), offers inherent advantages for enabling low-power/energy continual learning in autonomous embedded systems. In this paper, we comprehensively discuss the foundations and methods for enabling continual learning in neural networks, then analyze the state-of-the-art works considering SNNs. Afterward, comparative analyses of existing methods are conducted while considering crucial design factors, such as network complexity, memory, latency, and power/energy efficiency. We also explore the practical applications that can benefit from SNN-based continual learning and open challenges in real-world scenarios. In this manner, our survey provides valuable insights into the recent advancements of SNN-based continual learning for real-world application use-cases.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.09218
- https://arxiv.org/pdf/2410.09218
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403564468
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403564468Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.09218Digital Object Identifier
- Title
-
Continual Learning with Neuromorphic Computing: Theories, Methods, and ApplicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-11Full publication date if available
- Authors
-
Mishal Fatima Minhas, Rachmad Vidya Wicaksana Putra, Falah Awwad, Osman Hasan, Muhammad ShafiqueList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.09218Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.09218Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.09218Direct OA link when available
- Concepts
-
Neuromorphic engineering, Computer science, Artificial intelligence, Cognitive science, Human–computer interaction, Computer architecture, Psychology, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403564468 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.09218 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.09218 |
| ids.openalex | https://openalex.org/W4403564468 |
| fwci | |
| type | preprint |
| title | Continual Learning with Neuromorphic Computing: Theories, Methods, and Applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9854999780654907 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T10682 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9682000279426575 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Quantum Computing Algorithms and Architecture |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9605000019073486 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C151927369 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9477158188819885 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1981312 |
| concepts[0].display_name | Neuromorphic engineering |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5810741782188416 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.44663235545158386 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C188147891 |
| concepts[3].level | 1 |
| concepts[3].score | 0.35328853130340576 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[3].display_name | Cognitive science |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.34809330105781555 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| concepts[5].id | https://openalex.org/C118524514 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3306921720504761 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q173212 |
| concepts[5].display_name | Computer architecture |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2682364583015442 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.1771034300327301 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/neuromorphic-engineering |
| keywords[0].score | 0.9477158188819885 |
| keywords[0].display_name | Neuromorphic engineering |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5810741782188416 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.44663235545158386 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/cognitive-science |
| keywords[3].score | 0.35328853130340576 |
| keywords[3].display_name | Cognitive science |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.34809330105781555 |
| keywords[4].display_name | Human–computer interaction |
| keywords[5].id | https://openalex.org/keywords/computer-architecture |
| keywords[5].score | 0.3306921720504761 |
| keywords[5].display_name | Computer architecture |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.2682364583015442 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.1771034300327301 |
| keywords[7].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.09218 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.09218 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.09218 |
| locations[1].id | doi:10.48550/arxiv.2410.09218 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.09218 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5089213052 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2123-5437 |
| authorships[0].author.display_name | Mishal Fatima Minhas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Minhas, Mishal Fatima |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5030422145 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8597-4530 |
| authorships[1].author.display_name | Rachmad Vidya Wicaksana Putra |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Putra, Rachmad Vidya Wicaksana |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5088563267 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6154-2143 |
| authorships[2].author.display_name | Falah Awwad |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Awwad, Falah |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5066768973 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2562-2669 |
| authorships[3].author.display_name | Osman Hasan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hasan, Osman |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5005190949 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2607-8135 |
| authorships[4].author.display_name | Muhammad Shafique |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Shafique, Muhammad |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.09218 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Continual Learning with Neuromorphic Computing: Theories, Methods, and Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9854999780654907 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| related_works | https://openalex.org/W3031505884, https://openalex.org/W2951049725, https://openalex.org/W4285308918, https://openalex.org/W2971712727, https://openalex.org/W4387459935, https://openalex.org/W2908450434, https://openalex.org/W3193008624, https://openalex.org/W4382561696, https://openalex.org/W2581119583, https://openalex.org/W3015991694 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.09218 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.09218 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.09218 |
| primary_location.id | pmh:oai:arXiv.org:2410.09218 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.09218 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.09218 |
| publication_date | 2024-10-11 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 21 |
| abstract_inverted_index.In | 95, 160 |
| abstract_inverted_index.To | 0, 28 |
| abstract_inverted_index.We | 141 |
| abstract_inverted_index.as | 133 |
| abstract_inverted_index.in | 23, 91, 109, 157 |
| abstract_inverted_index.is | 34, 54 |
| abstract_inverted_index.of | 60, 122, 172 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.to | 2, 8, 20, 40, 47, 56 |
| abstract_inverted_index.we | 98 |
| abstract_inverted_index.and | 44, 66, 103, 138, 154 |
| abstract_inverted_index.are | 125 |
| abstract_inverted_index.can | 148 |
| abstract_inverted_index.for | 36, 86, 105, 176 |
| abstract_inverted_index.new | 10, 17, 42 |
| abstract_inverted_index.old | 26 |
| abstract_inverted_index.our | 163 |
| abstract_inverted_index.the | 58, 101, 114, 144, 169 |
| abstract_inverted_index.also | 142 |
| abstract_inverted_index.from | 150 |
| abstract_inverted_index.into | 168 |
| abstract_inverted_index.need | 7 |
| abstract_inverted_index.open | 155 |
| abstract_inverted_index.such | 132 |
| abstract_inverted_index.that | 147 |
| abstract_inverted_index.then | 112 |
| abstract_inverted_index.this | 96, 161 |
| abstract_inverted_index.with | 77 |
| abstract_inverted_index.SNNs. | 118 |
| abstract_inverted_index.adapt | 1, 46 |
| abstract_inverted_index.leads | 19 |
| abstract_inverted_index.tasks | 18 |
| abstract_inverted_index.this, | 30 |
| abstract_inverted_index.tight | 64 |
| abstract_inverted_index.under | 63 |
| abstract_inverted_index.where | 15 |
| abstract_inverted_index.while | 127 |
| abstract_inverted_index.works | 116 |
| abstract_inverted_index.(i.e., | 70 |
| abstract_inverted_index.Neural | 80 |
| abstract_inverted_index.design | 130 |
| abstract_inverted_index.ensure | 57 |
| abstract_inverted_index.memory | 67 |
| abstract_inverted_index.needed | 55 |
| abstract_inverted_index.neural | 110 |
| abstract_inverted_index.offers | 83 |
| abstract_inverted_index.paper, | 97 |
| abstract_inverted_index.recent | 170 |
| abstract_inverted_index.survey | 164 |
| abstract_inverted_index.tasks. | 27 |
| abstract_inverted_index.(SNNs), | 82 |
| abstract_inverted_index.Spiking | 79 |
| abstract_inverted_index.acquire | 41 |
| abstract_inverted_index.address | 29 |
| abstract_inverted_index.analyze | 113 |
| abstract_inverted_index.benefit | 149 |
| abstract_inverted_index.budgets | 69 |
| abstract_inverted_index.compute | 65 |
| abstract_inverted_index.concept | 33 |
| abstract_inverted_index.crucial | 129 |
| abstract_inverted_index.discuss | 100 |
| abstract_inverted_index.explore | 143 |
| abstract_inverted_index.manner, | 162 |
| abstract_inverted_index.memory, | 136 |
| abstract_inverted_index.methods | 104, 124 |
| abstract_inverted_index.network | 134 |
| abstract_inverted_index.systems | 6, 39, 62 |
| abstract_inverted_index.without | 12 |
| abstract_inverted_index.Networks | 81 |
| abstract_inverted_index.analyses | 121 |
| abstract_inverted_index.changing | 48 |
| abstract_inverted_index.embedded | 73, 93 |
| abstract_inverted_index.enabling | 37, 87, 106 |
| abstract_inverted_index.existing | 123 |
| abstract_inverted_index.factors, | 131 |
| abstract_inverted_index.inherent | 84 |
| abstract_inverted_index.insights | 167 |
| abstract_inverted_index.latency, | 137 |
| abstract_inverted_index.learning | 16, 32, 53, 90, 108, 153, 175 |
| abstract_inverted_index.proposed | 35 |
| abstract_inverted_index.provides | 165 |
| abstract_inverted_index.resource | 68 |
| abstract_inverted_index.systems. | 94 |
| abstract_inverted_index.valuable | 166 |
| abstract_inverted_index.SNN-based | 151, 173 |
| abstract_inverted_index.conducted | 126 |
| abstract_inverted_index.continual | 31, 52, 89, 107, 152, 174 |
| abstract_inverted_index.dynamics, | 4 |
| abstract_inverted_index.knowledge | 11, 43 |
| abstract_inverted_index.networks, | 111 |
| abstract_inverted_index.practical | 145 |
| abstract_inverted_index.so-called | 71 |
| abstract_inverted_index.systems). | 74 |
| abstract_inverted_index.Afterward, | 119 |
| abstract_inverted_index.advantages | 85 |
| abstract_inverted_index.assimilate | 9 |
| abstract_inverted_index.autonomous | 38, 61, 72, 92 |
| abstract_inverted_index.challenges | 156 |
| abstract_inverted_index.computing, | 76 |
| abstract_inverted_index.real-world | 3, 158, 177 |
| abstract_inverted_index.scenarios. | 159 |
| abstract_inverted_index.use-cases. | 179 |
| abstract_inverted_index.application | 178 |
| abstract_inverted_index.comparative | 120 |
| abstract_inverted_index.complexity, | 135 |
| abstract_inverted_index.considering | 117, 128 |
| abstract_inverted_index.degradation | 22 |
| abstract_inverted_index.dynamically | 45 |
| abstract_inverted_index.efficiency. | 140 |
| abstract_inverted_index.forgetting, | 14 |
| abstract_inverted_index.foundations | 102 |
| abstract_inverted_index.intelligent | 5 |
| abstract_inverted_index.performance | 24 |
| abstract_inverted_index.Neuromorphic | 75 |
| abstract_inverted_index.advancements | 171 |
| abstract_inverted_index.applications | 146 |
| abstract_inverted_index.catastrophic | 13 |
| abstract_inverted_index.power/energy | 139 |
| abstract_inverted_index.Specifically, | 50 |
| abstract_inverted_index.environments. | 49 |
| abstract_inverted_index.functionality | 59 |
| abstract_inverted_index.brain-inspired | 78 |
| abstract_inverted_index.comprehensively | 99 |
| abstract_inverted_index.energy-efficient | 51 |
| abstract_inverted_index.low-power/energy | 88 |
| abstract_inverted_index.state-of-the-art | 115 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |