Continuous daily maps of fine particulate matter (PM2.5) air quality in East Asia by application of a random forest algorithm to GOCI geostationary satellite data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.7910/dvn/0l3ip7
We use 2011-2019 aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) instrument over East Asia to infer 24-h daily surface fine particulate matter (PM2.5) concentrations at continuous 6km x 6km resolution over South Korea, eastern China, and Japan. We use PM2.5 observations from national networks to train and cross-validate a random forest (RF) algorithm that predicts PM2.5 from the gap-filled GOCI AOD, meteorological variables, and other predictor variables. The predicted 24-h PM2.5 for sites entirely withheld from training in a ten-fold crossvalidation procedure correlates highly with observed concentrations (R2 = 0.89) with single-value precision of 26-32% depending on country. Prediction of annual mean values has R2 = 0.96 and single-value precision of 12%. More information is available in the associated publication. Here we supply a NetCDF containing the inferred daily PM2.5 fields from 2011-19 for use in further research. If you use this data, please cite the associated publication, and feel free to reach out via email to discuss this work.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.7910/dvn/0l3ip7
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398327017
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398327017Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7910/dvn/0l3ip7Digital Object Identifier
- Title
-
Continuous daily maps of fine particulate matter (PM2.5) air quality in East Asia by application of a random forest algorithm to GOCI geostationary satellite dataWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-22Full publication date if available
- Authors
-
Drew C. Pendergrass, Daniel Jacob, Shixian Zhai, Jhoon Kim, Ja‐Ho Koo, Seoyoung Lee, Minah Bae, Soontae Kim, Hong LiaoList of authors in order
- Landing page
-
https://doi.org/10.7910/dvn/0l3ip7Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7910/dvn/0l3ip7Direct OA link when available
- Concepts
-
Geostationary orbit, Particulates, Environmental science, Air quality index, Satellite, Remote sensing, Algorithm, Meteorology, Computer science, Geography, Chemistry, Physics, Astronomy, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 2, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398327017 |
|---|---|
| doi | https://doi.org/10.7910/dvn/0l3ip7 |
| ids.doi | https://doi.org/10.7910/dvn/0l3ip7 |
| ids.openalex | https://openalex.org/W4398327017 |
| fwci | |
| type | dataset |
| title | Continuous daily maps of fine particulate matter (PM2.5) air quality in East Asia by application of a random forest algorithm to GOCI geostationary satellite data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12120 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9925000071525574 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Air Quality Monitoring and Forecasting |
| topics[1].id | https://openalex.org/T11588 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9406999945640564 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Atmospheric and Environmental Gas Dynamics |
| topics[2].id | https://openalex.org/T10075 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9192000031471252 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Atmospheric chemistry and aerosols |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C16405173 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7970832586288452 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192316 |
| concepts[0].display_name | Geostationary orbit |
| concepts[1].id | https://openalex.org/C24245907 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7817354202270508 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q498957 |
| concepts[1].display_name | Particulates |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6101254820823669 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C126314574 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5882055163383484 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2364111 |
| concepts[3].display_name | Air quality index |
| concepts[4].id | https://openalex.org/C19269812 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5826222896575928 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[4].display_name | Satellite |
| concepts[5].id | https://openalex.org/C62649853 |
| concepts[5].level | 1 |
| concepts[5].score | 0.466269314289093 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[5].display_name | Remote sensing |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38888001441955566 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C153294291 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3687508702278137 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[7].display_name | Meteorology |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2744060754776001 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2399144470691681 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.10818836092948914 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08968982100486755 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C1276947 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[12].display_name | Astronomy |
| concepts[13].id | https://openalex.org/C178790620 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[13].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/geostationary-orbit |
| keywords[0].score | 0.7970832586288452 |
| keywords[0].display_name | Geostationary orbit |
| keywords[1].id | https://openalex.org/keywords/particulates |
| keywords[1].score | 0.7817354202270508 |
| keywords[1].display_name | Particulates |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.6101254820823669 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/air-quality-index |
| keywords[3].score | 0.5882055163383484 |
| keywords[3].display_name | Air quality index |
| keywords[4].id | https://openalex.org/keywords/satellite |
| keywords[4].score | 0.5826222896575928 |
| keywords[4].display_name | Satellite |
| keywords[5].id | https://openalex.org/keywords/remote-sensing |
| keywords[5].score | 0.466269314289093 |
| keywords[5].display_name | Remote sensing |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.38888001441955566 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/meteorology |
| keywords[7].score | 0.3687508702278137 |
| keywords[7].display_name | Meteorology |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.2744060754776001 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.2399144470691681 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.10818836092948914 |
| keywords[10].display_name | Chemistry |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.08968982100486755 |
| keywords[11].display_name | Physics |
| language | en |
| locations[0].id | doi:10.7910/dvn/0l3ip7 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4377196806 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Harvard Dataverse |
| locations[0].source.host_organization | https://openalex.org/I136199984 |
| locations[0].source.host_organization_name | Harvard University |
| locations[0].source.host_organization_lineage | https://openalex.org/I136199984 |
| locations[0].license | public-domain |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.7910/dvn/0l3ip7 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5081902731 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8210-4983 |
| authorships[0].author.display_name | Drew C. Pendergrass |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[0].affiliations[0].raw_affiliation_string | (School of Engineering and Applied Sciences, Harvard University) |
| authorships[0].institutions[0].id | https://openalex.org/I136199984 |
| authorships[0].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Harvard University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Drew Pendergrass |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | (School of Engineering and Applied Sciences, Harvard University) |
| authorships[1].author.id | https://openalex.org/A5013271600 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6687-7169 |
| authorships[1].author.display_name | Daniel Jacob |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[1].affiliations[0].raw_affiliation_string | (School of Engineering and Applied Sciences, Harvard University) |
| authorships[1].institutions[0].id | https://openalex.org/I136199984 |
| authorships[1].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Harvard University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daniel J. Jacob |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | (School of Engineering and Applied Sciences, Harvard University) |
| authorships[2].author.id | https://openalex.org/A5051694152 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0073-7809 |
| authorships[2].author.display_name | Shixian Zhai |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[2].affiliations[0].raw_affiliation_string | (School of Engineering and Applied Sciences, Harvard University) |
| authorships[2].institutions[0].id | https://openalex.org/I136199984 |
| authorships[2].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Harvard University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shixian Zhai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | (School of Engineering and Applied Sciences, Harvard University) |
| authorships[3].author.id | https://openalex.org/A5050163637 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1508-9218 |
| authorships[3].author.display_name | Jhoon Kim |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I193775966, https://openalex.org/I2250650973 |
| authorships[3].affiliations[0].raw_affiliation_string | (Department of Atmospheric Sciences, Yonsei University; Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT)) |
| authorships[3].institutions[0].id | https://openalex.org/I2250650973 |
| authorships[3].institutions[0].ror | https://ror.org/04w3jy968 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I2250650973 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Samsung (South Korea) |
| authorships[3].institutions[1].id | https://openalex.org/I193775966 |
| authorships[3].institutions[1].ror | https://ror.org/01wjejq96 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I193775966 |
| authorships[3].institutions[1].country_code | KR |
| authorships[3].institutions[1].display_name | Yonsei University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jhoon Kim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | (Department of Atmospheric Sciences, Yonsei University; Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT)) |
| authorships[4].author.id | https://openalex.org/A5112134454 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ja‐Ho Koo |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[4].affiliations[0].raw_affiliation_string | (Department of Atmospheric Sciences, Yonsei University) |
| authorships[4].institutions[0].id | https://openalex.org/I193775966 |
| authorships[4].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Yonsei University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ja-Ho Koo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | (Department of Atmospheric Sciences, Yonsei University) |
| authorships[5].author.id | https://openalex.org/A5100661015 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2821-1208 |
| authorships[5].author.display_name | Seoyoung Lee |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[5].affiliations[0].raw_affiliation_string | (Department of Atmospheric Sciences, Yonsei University) |
| authorships[5].institutions[0].id | https://openalex.org/I193775966 |
| authorships[5].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Yonsei University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Seoyoung Lee |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | (Department of Atmospheric Sciences, Yonsei University) |
| authorships[6].author.id | https://openalex.org/A5031521247 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0054-9330 |
| authorships[6].author.display_name | Minah Bae |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I57664883 |
| authorships[6].affiliations[0].raw_affiliation_string | (Department of Environmental and Safety Engineering, Ajou University) |
| authorships[6].institutions[0].id | https://openalex.org/I57664883 |
| authorships[6].institutions[0].ror | https://ror.org/03tzb2h73 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I57664883 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Ajou University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Minah Bae |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | (Department of Environmental and Safety Engineering, Ajou University) |
| authorships[7].author.id | https://openalex.org/A5032093850 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1198-934X |
| authorships[7].author.display_name | Soontae Kim |
| authorships[7].countries | KR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I57664883 |
| authorships[7].affiliations[0].raw_affiliation_string | (Department of Environmental and Safety Engineering, Ajou University) |
| authorships[7].institutions[0].id | https://openalex.org/I57664883 |
| authorships[7].institutions[0].ror | https://ror.org/03tzb2h73 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I57664883 |
| authorships[7].institutions[0].country_code | KR |
| authorships[7].institutions[0].display_name | Ajou University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Soontae Kim |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | (Department of Environmental and Safety Engineering, Ajou University) |
| authorships[8].author.id | https://openalex.org/A5034727881 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6628-1798 |
| authorships[8].author.display_name | Hong Liao |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[8].affiliations[0].raw_affiliation_string | (5Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China) |
| authorships[8].institutions[0].id | https://openalex.org/I200845125 |
| authorships[8].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Hong Liao |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | (5Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7910/dvn/0l3ip7 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Continuous daily maps of fine particulate matter (PM2.5) air quality in East Asia by application of a random forest algorithm to GOCI geostationary satellite data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12120 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9925000071525574 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Air Quality Monitoring and Forecasting |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2023364053, https://openalex.org/W137969429, https://openalex.org/W2372577889, https://openalex.org/W4389284368, https://openalex.org/W3128070617, https://openalex.org/W4385485074, https://openalex.org/W1933918004, https://openalex.org/W4317914702, https://openalex.org/W2042029739 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.7910/dvn/0l3ip7 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196806 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Harvard Dataverse |
| best_oa_location.source.host_organization | https://openalex.org/I136199984 |
| best_oa_location.source.host_organization_name | Harvard University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.7910/dvn/0l3ip7 |
| primary_location.id | doi:10.7910/dvn/0l3ip7 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4377196806 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Harvard Dataverse |
| primary_location.source.host_organization | https://openalex.org/I136199984 |
| primary_location.source.host_organization_name | Harvard University |
| primary_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| primary_location.license | public-domain |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.7910/dvn/0l3ip7 |
| publication_date | 2021-08-22 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 93, 110 |
| abstract_inverted_index.a | 53, 83, 128 |
| abstract_inverted_index.x | 32 |
| abstract_inverted_index.If | 143 |
| abstract_inverted_index.R2 | 109 |
| abstract_inverted_index.We | 0, 42 |
| abstract_inverted_index.at | 29 |
| abstract_inverted_index.in | 82, 121, 140 |
| abstract_inverted_index.is | 119 |
| abstract_inverted_index.of | 98, 104, 115 |
| abstract_inverted_index.on | 101 |
| abstract_inverted_index.to | 19, 49, 156, 161 |
| abstract_inverted_index.we | 126 |
| abstract_inverted_index.(R2 | 92 |
| abstract_inverted_index.6km | 31, 33 |
| abstract_inverted_index.The | 72 |
| abstract_inverted_index.and | 40, 51, 68, 112, 153 |
| abstract_inverted_index.for | 76, 138 |
| abstract_inverted_index.has | 108 |
| abstract_inverted_index.out | 158 |
| abstract_inverted_index.the | 9, 62, 122, 131, 150 |
| abstract_inverted_index.use | 1, 43, 139, 145 |
| abstract_inverted_index.via | 159 |
| abstract_inverted_index.you | 144 |
| abstract_inverted_index.(RF) | 56 |
| abstract_inverted_index.0.96 | 111 |
| abstract_inverted_index.12%. | 116 |
| abstract_inverted_index.24-h | 21, 74 |
| abstract_inverted_index.AOD, | 65 |
| abstract_inverted_index.Asia | 18 |
| abstract_inverted_index.East | 17 |
| abstract_inverted_index.GOCI | 64 |
| abstract_inverted_index.Here | 125 |
| abstract_inverted_index.More | 117 |
| abstract_inverted_index.cite | 149 |
| abstract_inverted_index.feel | 154 |
| abstract_inverted_index.fine | 24 |
| abstract_inverted_index.free | 155 |
| abstract_inverted_index.from | 8, 46, 61, 80, 136 |
| abstract_inverted_index.mean | 106 |
| abstract_inverted_index.over | 16, 35 |
| abstract_inverted_index.that | 58 |
| abstract_inverted_index.this | 146, 163 |
| abstract_inverted_index.with | 89, 95 |
| abstract_inverted_index.(AOD) | 6 |
| abstract_inverted_index.0.89) | 94 |
| abstract_inverted_index.Color | 12 |
| abstract_inverted_index.Ocean | 11 |
| abstract_inverted_index.PM2.5 | 44, 60, 75, 134 |
| abstract_inverted_index.South | 36 |
| abstract_inverted_index.daily | 22, 133 |
| abstract_inverted_index.data, | 147 |
| abstract_inverted_index.depth | 5 |
| abstract_inverted_index.email | 160 |
| abstract_inverted_index.infer | 20 |
| abstract_inverted_index.other | 69 |
| abstract_inverted_index.reach | 157 |
| abstract_inverted_index.sites | 77 |
| abstract_inverted_index.train | 50 |
| abstract_inverted_index.work. | 164 |
| abstract_inverted_index.(GOCI) | 14 |
| abstract_inverted_index.26-32% | 99 |
| abstract_inverted_index.China, | 39 |
| abstract_inverted_index.Imager | 13 |
| abstract_inverted_index.Japan. | 41 |
| abstract_inverted_index.Korea, | 37 |
| abstract_inverted_index.NetCDF | 129 |
| abstract_inverted_index.annual | 105 |
| abstract_inverted_index.fields | 135 |
| abstract_inverted_index.forest | 55 |
| abstract_inverted_index.highly | 88 |
| abstract_inverted_index.matter | 26 |
| abstract_inverted_index.please | 148 |
| abstract_inverted_index.random | 54 |
| abstract_inverted_index.supply | 127 |
| abstract_inverted_index.values | 107 |
| abstract_inverted_index.(PM2.5) | 27 |
| abstract_inverted_index.2011-19 | 137 |
| abstract_inverted_index.aerosol | 3 |
| abstract_inverted_index.discuss | 162 |
| abstract_inverted_index.eastern | 38 |
| abstract_inverted_index.further | 141 |
| abstract_inverted_index.optical | 4 |
| abstract_inverted_index.surface | 23 |
| abstract_inverted_index.country. | 102 |
| abstract_inverted_index.entirely | 78 |
| abstract_inverted_index.inferred | 132 |
| abstract_inverted_index.national | 47 |
| abstract_inverted_index.networks | 48 |
| abstract_inverted_index.observed | 90 |
| abstract_inverted_index.predicts | 59 |
| abstract_inverted_index.ten-fold | 84 |
| abstract_inverted_index.training | 81 |
| abstract_inverted_index.withheld | 79 |
| abstract_inverted_index.2011-2019 | 2 |
| abstract_inverted_index.algorithm | 57 |
| abstract_inverted_index.available | 120 |
| abstract_inverted_index.depending | 100 |
| abstract_inverted_index.precision | 97, 114 |
| abstract_inverted_index.predicted | 73 |
| abstract_inverted_index.predictor | 70 |
| abstract_inverted_index.procedure | 86 |
| abstract_inverted_index.research. | 142 |
| abstract_inverted_index.Prediction | 103 |
| abstract_inverted_index.associated | 123, 151 |
| abstract_inverted_index.containing | 130 |
| abstract_inverted_index.continuous | 30 |
| abstract_inverted_index.correlates | 87 |
| abstract_inverted_index.gap-filled | 63 |
| abstract_inverted_index.instrument | 15 |
| abstract_inverted_index.resolution | 34 |
| abstract_inverted_index.variables, | 67 |
| abstract_inverted_index.variables. | 71 |
| abstract_inverted_index.information | 118 |
| abstract_inverted_index.particulate | 25 |
| abstract_inverted_index.observations | 7, 45 |
| abstract_inverted_index.publication, | 152 |
| abstract_inverted_index.publication. | 124 |
| abstract_inverted_index.single-value | 96, 113 |
| abstract_inverted_index.Geostationary | 10 |
| abstract_inverted_index.concentrations | 28, 91 |
| abstract_inverted_index.cross-validate | 52 |
| abstract_inverted_index.meteorological | 66 |
| abstract_inverted_index.crossvalidation | 85 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |