Continuous mapping of fine particulate matter (PM 2.5 ) air quality in East Asia at daily 6 × 6 km 2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.5194/amt-15-1075-2022
We use 2011–2019 aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) instrument over East Asia to infer 24 h daily surface fine particulate matter (PM2.5) concentrations at a continuous 6 × 6 km2 resolution over eastern China, South Korea, and Japan. This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data, including information encoded in GOCI AOD retrieval failure and trained with PM2.5 observations from the three national networks. The predicted 24 h GOCI PM2.5 concentrations for sites entirely withheld from training in a 10-fold cross-validation procedure correlate highly with network observations (R2 = 0.89) with a single-value precision of 26 %–32 %, depending on the country. Prediction of the annual mean values has R2 = 0.96 and a single-value precision of 12 %. GOCI PM2.5 is only moderately successful for diagnosing local exceedances of the National Ambient Air Quality Standard (NAAQS) because these exceedances are typically within the single-value precisions of the RF and also because of RF smoothing of extreme PM2.5 concentrations. The area-weighted and population-weighted trends of GOCI PM2.5 concentrations for eastern China, South Korea, and Japan show steady 2015–2019 declines consistent with surface networks, but the surface networks in eastern China and South Korea underestimate population exposure. Further examination of GOCI PM2.5 fields for South Korea identifies hot spots where surface network sites were initially lacking and shows 2015–2019 PM2.5 decreases across the country, except for flat concentrations in the Seoul metropolitan area. Inspection of the monthly PM2.5 time series in Beijing, Seoul, and Tokyo shows that the RF algorithm successfully captures observed seasonal variations in PM2.5, even though AOD and PM2.5 often have opposite seasonalities. The application of the RF algorithm to urban pollution episodes in Seoul and Beijing demonstrates high skill in reproducing the observed day-to-day variations in air quality and spatial patterns on the 6 km scale. A comparison to a Community Multiscale Air Quality (CMAQ) simulation for the Korean peninsula demonstrates the value of the continuous GOCI PM2.5 fields for testing air quality models, including over North Korea, where they offer a unique resource.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/amt-15-1075-2022
- OA Status
- gold
- Cited By
- 26
- References
- 63
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4214935773
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4214935773Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/amt-15-1075-2022Digital Object Identifier
- Title
-
Continuous mapping of fine particulate matter (PM 2.5 ) air quality in East Asia at daily 6 × 6 km 2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-03Full publication date if available
- Authors
-
Drew C. Pendergrass, Shixian Zhai, Jhoon Kim, Ja‐Ho Koo, Seoyoung Lee, Minah Bae, Soontae Kim, Hong Liao, Daniel J. JacobList of authors in order
- Landing page
-
https://doi.org/10.5194/amt-15-1075-2022Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/amt-15-1075-2022Direct OA link when available
- Concepts
-
Environmental science, Particulates, Population, Aerosol, Atmospheric sciences, East Asia, Climatology, China, Meteorology, Chemistry, Physics, Geology, Geography, Demography, Sociology, Organic chemistry, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
26Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 11, 2023: 6, 2022: 3, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
63Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4214935773 |
|---|---|
| doi | https://doi.org/10.5194/amt-15-1075-2022 |
| ids.doi | https://doi.org/10.5194/amt-15-1075-2022 |
| ids.openalex | https://openalex.org/W4214935773 |
| fwci | 3.07636369 |
| type | article |
| title | Continuous mapping of fine particulate matter (PM 2.5 ) air quality in East Asia at daily 6 × 6 km 2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data |
| awards[0].id | https://openalex.org/G215188265 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | Graduate Fellowships Program |
| awards[0].funder_display_name | National Science Foundation |
| awards[1].id | https://openalex.org/G8001550077 |
| awards[1].funder_id | https://openalex.org/F4320315121 |
| awards[1].display_name | |
| awards[1].funder_award_id | Samsung PM2.5 Strategic Research Program |
| awards[1].funder_display_name | Samsung Advanced Institute of Technology |
| biblio.issue | 4 |
| biblio.volume | 15 |
| biblio.last_page | 1091 |
| biblio.first_page | 1075 |
| topics[0].id | https://openalex.org/T10075 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Atmospheric chemistry and aerosols |
| topics[1].id | https://openalex.org/T10190 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Air Quality and Health Impacts |
| topics[2].id | https://openalex.org/T10347 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9994999766349792 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Atmospheric aerosols and clouds |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320315121 |
| funders[1].ror | |
| funders[1].display_name | Samsung Advanced Institute of Technology |
| is_xpac | False |
| apc_list.value | 1470 |
| apc_list.currency | EUR |
| apc_list.value_usd | 1585 |
| apc_paid.value | 1470 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1585 |
| concepts[0].id | https://openalex.org/C39432304 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6654676198959351 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[0].display_name | Environmental science |
| concepts[1].id | https://openalex.org/C24245907 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5786541700363159 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q498957 |
| concepts[1].display_name | Particulates |
| concepts[2].id | https://openalex.org/C2908647359 |
| concepts[2].level | 2 |
| concepts[2].score | 0.503645122051239 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[2].display_name | Population |
| concepts[3].id | https://openalex.org/C2779345167 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45396551489830017 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q104541 |
| concepts[3].display_name | Aerosol |
| concepts[4].id | https://openalex.org/C91586092 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4450899660587311 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q757520 |
| concepts[4].display_name | Atmospheric sciences |
| concepts[5].id | https://openalex.org/C76775654 |
| concepts[5].level | 3 |
| concepts[5].score | 0.415462464094162 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q27231 |
| concepts[5].display_name | East Asia |
| concepts[6].id | https://openalex.org/C49204034 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40275704860687256 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[6].display_name | Climatology |
| concepts[7].id | https://openalex.org/C191935318 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3515801727771759 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[7].display_name | China |
| concepts[8].id | https://openalex.org/C153294291 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3295324742794037 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[8].display_name | Meteorology |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20721283555030823 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.19519805908203125 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.14446961879730225 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1378396451473236 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C149923435 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09242582321166992 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[13].display_name | Demography |
| concepts[14].id | https://openalex.org/C144024400 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[14].display_name | Sociology |
| concepts[15].id | https://openalex.org/C178790620 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[15].display_name | Organic chemistry |
| concepts[16].id | https://openalex.org/C166957645 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[16].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/environmental-science |
| keywords[0].score | 0.6654676198959351 |
| keywords[0].display_name | Environmental science |
| keywords[1].id | https://openalex.org/keywords/particulates |
| keywords[1].score | 0.5786541700363159 |
| keywords[1].display_name | Particulates |
| keywords[2].id | https://openalex.org/keywords/population |
| keywords[2].score | 0.503645122051239 |
| keywords[2].display_name | Population |
| keywords[3].id | https://openalex.org/keywords/aerosol |
| keywords[3].score | 0.45396551489830017 |
| keywords[3].display_name | Aerosol |
| keywords[4].id | https://openalex.org/keywords/atmospheric-sciences |
| keywords[4].score | 0.4450899660587311 |
| keywords[4].display_name | Atmospheric sciences |
| keywords[5].id | https://openalex.org/keywords/east-asia |
| keywords[5].score | 0.415462464094162 |
| keywords[5].display_name | East Asia |
| keywords[6].id | https://openalex.org/keywords/climatology |
| keywords[6].score | 0.40275704860687256 |
| keywords[6].display_name | Climatology |
| keywords[7].id | https://openalex.org/keywords/china |
| keywords[7].score | 0.3515801727771759 |
| keywords[7].display_name | China |
| keywords[8].id | https://openalex.org/keywords/meteorology |
| keywords[8].score | 0.3295324742794037 |
| keywords[8].display_name | Meteorology |
| keywords[9].id | https://openalex.org/keywords/chemistry |
| keywords[9].score | 0.20721283555030823 |
| keywords[9].display_name | Chemistry |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.19519805908203125 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.14446961879730225 |
| keywords[11].display_name | Geology |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.1378396451473236 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/demography |
| keywords[13].score | 0.09242582321166992 |
| keywords[13].display_name | Demography |
| language | en |
| locations[0].id | doi:10.5194/amt-15-1075-2022 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S70769875 |
| locations[0].source.issn | 1867-1381, 1867-8548 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1867-1381 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Atmospheric measurement techniques |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Atmospheric Measurement Techniques |
| locations[0].landing_page_url | https://doi.org/10.5194/amt-15-1075-2022 |
| locations[1].id | pmh:oai:doaj.org/article:4ee9879bae0945028af27b3aa4bd8f34 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Atmospheric Measurement Techniques, Vol 15, Pp 1075-1091 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/4ee9879bae0945028af27b3aa4bd8f34 |
| locations[2].id | pmh:oai:repository.hkust.edu.hk:1783.1-126395 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://repository.hkust.edu.hk/ir/Record/1783.1-126395 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5081902731 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8210-4983 |
| authorships[0].author.display_name | Drew C. Pendergrass |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I136199984 |
| authorships[0].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Harvard University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Drew C. Pendergrass |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA |
| authorships[1].author.id | https://openalex.org/A5051694152 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0073-7809 |
| authorships[1].author.display_name | Shixian Zhai |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I136199984 |
| authorships[1].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Harvard University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shixian Zhai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA |
| authorships[2].author.id | https://openalex.org/A5050163637 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1508-9218 |
| authorships[2].author.display_name | Jhoon Kim |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2250650973 |
| authorships[2].affiliations[0].raw_affiliation_string | Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT), Suwon, South Korea |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I193775966 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea |
| authorships[2].institutions[0].id | https://openalex.org/I2250650973 |
| authorships[2].institutions[0].ror | https://ror.org/04w3jy968 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2250650973 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Samsung (South Korea) |
| authorships[2].institutions[1].id | https://openalex.org/I193775966 |
| authorships[2].institutions[1].ror | https://ror.org/01wjejq96 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I193775966 |
| authorships[2].institutions[1].country_code | KR |
| authorships[2].institutions[1].display_name | Yonsei University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jhoon Kim |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea, Particulate Matter Research Institute, Samsung Advanced Institute of Technology (SAIT), Suwon, South Korea |
| authorships[3].author.id | https://openalex.org/A5112134454 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ja‐Ho Koo |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea |
| authorships[3].institutions[0].id | https://openalex.org/I193775966 |
| authorships[3].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Yonsei University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ja-Ho Koo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea |
| authorships[4].author.id | https://openalex.org/A5100661015 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2821-1208 |
| authorships[4].author.display_name | Seoyoung Lee |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea |
| authorships[4].institutions[0].id | https://openalex.org/I193775966 |
| authorships[4].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Yonsei University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Seoyoung Lee |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea |
| authorships[5].author.id | https://openalex.org/A5031521247 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0054-9330 |
| authorships[5].author.display_name | Minah Bae |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I57664883 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea |
| authorships[5].institutions[0].id | https://openalex.org/I57664883 |
| authorships[5].institutions[0].ror | https://ror.org/03tzb2h73 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I57664883 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Ajou University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Minah Bae |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea |
| authorships[6].author.id | https://openalex.org/A5032093850 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1198-934X |
| authorships[6].author.display_name | Soontae Kim |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I57664883 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea |
| authorships[6].institutions[0].id | https://openalex.org/I57664883 |
| authorships[6].institutions[0].ror | https://ror.org/03tzb2h73 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I57664883 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Ajou University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Soontae Kim |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Environmental and Safety Engineering, Ajou University, Suwon, South Korea |
| authorships[7].author.id | https://openalex.org/A5034727881 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6628-1798 |
| authorships[7].author.display_name | Hong Liao |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[7].affiliations[0].raw_affiliation_string | Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China |
| authorships[7].institutions[0].id | https://openalex.org/I200845125 |
| authorships[7].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Hong Liao |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China |
| authorships[8].author.id | https://openalex.org/A5011740304 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6373-3100 |
| authorships[8].author.display_name | Daniel J. Jacob |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[8].affiliations[0].raw_affiliation_string | School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA |
| authorships[8].institutions[0].id | https://openalex.org/I136199984 |
| authorships[8].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Harvard University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Daniel J. Jacob |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/amt-15-1075-2022 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-03-05T00:00:00 |
| display_name | Continuous mapping of fine particulate matter (PM 2.5 ) air quality in East Asia at daily 6 × 6 km 2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T10075 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Atmospheric chemistry and aerosols |
| related_works | https://openalex.org/W3126136541, https://openalex.org/W2396583078, https://openalex.org/W2896789315, https://openalex.org/W2941835033, https://openalex.org/W4213416983, https://openalex.org/W3040270278, https://openalex.org/W2165583849, https://openalex.org/W626601394, https://openalex.org/W2998338862, https://openalex.org/W3196990708 |
| cited_by_count | 26 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.5194/amt-15-1075-2022 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S70769875 |
| best_oa_location.source.issn | 1867-1381, 1867-8548 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1867-1381 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Atmospheric measurement techniques |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Atmospheric Measurement Techniques |
| best_oa_location.landing_page_url | https://doi.org/10.5194/amt-15-1075-2022 |
| primary_location.id | doi:10.5194/amt-15-1075-2022 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S70769875 |
| primary_location.source.issn | 1867-1381, 1867-8548 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1867-1381 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Atmospheric measurement techniques |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Atmospheric Measurement Techniques |
| primary_location.landing_page_url | https://doi.org/10.5194/amt-15-1075-2022 |
| publication_date | 2022-03-03 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2805334823, https://openalex.org/W2803068951, https://openalex.org/W3110835763, https://openalex.org/W2617759587, https://openalex.org/W2911964244, https://openalex.org/W2790202404, https://openalex.org/W2890701797, https://openalex.org/W6959217055, https://openalex.org/W2969384816, https://openalex.org/W1764425612, https://openalex.org/W2165405661, https://openalex.org/W2783382870, https://openalex.org/W3116916254, https://openalex.org/W3163791091, https://openalex.org/W2886151619, https://openalex.org/W2954586028, https://openalex.org/W2012394874, https://openalex.org/W4255777770, https://openalex.org/W590735017, https://openalex.org/W3006298073, https://openalex.org/W2056132907, https://openalex.org/W3133659432, https://openalex.org/W2108079253, https://openalex.org/W3030103373, https://openalex.org/W4251800481, https://openalex.org/W3025949386, https://openalex.org/W2929543877, https://openalex.org/W2620300958, https://openalex.org/W2865430977, https://openalex.org/W3036686135, https://openalex.org/W3120249948, https://openalex.org/W291729710, https://openalex.org/W2316257305, https://openalex.org/W2000109687, https://openalex.org/W3117819031, https://openalex.org/W2951572255, https://openalex.org/W3087714718, https://openalex.org/W1972585310, https://openalex.org/W2031528200, https://openalex.org/W2804076223, https://openalex.org/W3136179920, https://openalex.org/W2892209339, https://openalex.org/W4398327017, https://openalex.org/W2145265567, https://openalex.org/W2161983375, https://openalex.org/W2013519992, https://openalex.org/W2970537483, https://openalex.org/W2147169375, https://openalex.org/W2909938372, https://openalex.org/W1987098847, https://openalex.org/W2310114729, https://openalex.org/W2912034185, https://openalex.org/W2108162680, https://openalex.org/W2750146434, https://openalex.org/W2989668089, https://openalex.org/W3088154914, https://openalex.org/W1832138061, https://openalex.org/W2904851601, https://openalex.org/W2905885772, https://openalex.org/W2970481843, https://openalex.org/W3214685028, https://openalex.org/W2037202266, https://openalex.org/W3122817556 |
| referenced_works_count | 63 |
| abstract_inverted_index.6 | 34, 36, 314 |
| abstract_inverted_index.= | 106, 128 |
| abstract_inverted_index.A | 317 |
| abstract_inverted_index.a | 32, 50, 96, 109, 131, 320, 352 |
| abstract_inverted_index.h | 23, 85 |
| abstract_inverted_index.%, | 115 |
| abstract_inverted_index.%. | 136 |
| abstract_inverted_index.12 | 135 |
| abstract_inverted_index.24 | 22, 84 |
| abstract_inverted_index.26 | 113 |
| abstract_inverted_index.R2 | 127 |
| abstract_inverted_index.RF | 166, 171, 265, 287 |
| abstract_inverted_index.We | 1 |
| abstract_inverted_index.at | 31 |
| abstract_inverted_index.in | 67, 95, 205, 245, 257, 272, 293, 300, 306 |
| abstract_inverted_index.is | 47, 139 |
| abstract_inverted_index.km | 315 |
| abstract_inverted_index.of | 112, 121, 134, 147, 164, 170, 173, 182, 216, 251, 285, 334 |
| abstract_inverted_index.on | 117, 312 |
| abstract_inverted_index.to | 20, 56, 289, 319 |
| abstract_inverted_index.× | 35 |
| abstract_inverted_index.(R2 | 105 |
| abstract_inverted_index.AOD | 69, 276 |
| abstract_inverted_index.Air | 151, 323 |
| abstract_inverted_index.The | 82, 177, 283 |
| abstract_inverted_index.air | 307, 342 |
| abstract_inverted_index.and | 44, 61, 72, 130, 167, 179, 191, 208, 233, 260, 277, 295, 309 |
| abstract_inverted_index.are | 158 |
| abstract_inverted_index.but | 201 |
| abstract_inverted_index.for | 89, 143, 186, 220, 242, 327, 340 |
| abstract_inverted_index.has | 126 |
| abstract_inverted_index.hot | 224 |
| abstract_inverted_index.km2 | 37 |
| abstract_inverted_index.the | 10, 57, 78, 118, 122, 148, 161, 165, 202, 239, 246, 252, 264, 286, 302, 313, 328, 332, 335 |
| abstract_inverted_index.use | 2 |
| abstract_inverted_index.(RF) | 53 |
| abstract_inverted_index.0.96 | 129 |
| abstract_inverted_index.AODs | 60 |
| abstract_inverted_index.Asia | 19 |
| abstract_inverted_index.East | 18 |
| abstract_inverted_index.GOCI | 59, 68, 86, 137, 183, 217, 337 |
| abstract_inverted_index.This | 46 |
| abstract_inverted_index.also | 168 |
| abstract_inverted_index.done | 48 |
| abstract_inverted_index.even | 274 |
| abstract_inverted_index.fine | 26 |
| abstract_inverted_index.flat | 243 |
| abstract_inverted_index.from | 9, 77, 93 |
| abstract_inverted_index.have | 280 |
| abstract_inverted_index.high | 298 |
| abstract_inverted_index.mean | 124 |
| abstract_inverted_index.only | 140 |
| abstract_inverted_index.over | 17, 39, 346 |
| abstract_inverted_index.show | 193 |
| abstract_inverted_index.that | 263 |
| abstract_inverted_index.they | 350 |
| abstract_inverted_index.time | 255 |
| abstract_inverted_index.were | 230 |
| abstract_inverted_index.with | 49, 74, 102, 108, 198 |
| abstract_inverted_index.(AOD) | 7 |
| abstract_inverted_index.0.89) | 107 |
| abstract_inverted_index.China | 207 |
| abstract_inverted_index.Color | 13 |
| abstract_inverted_index.Japan | 192 |
| abstract_inverted_index.Korea | 210, 222 |
| abstract_inverted_index.North | 347 |
| abstract_inverted_index.Ocean | 12 |
| abstract_inverted_index.PM2.5 | 75, 87, 138, 175, 184, 218, 236, 254, 278, 338 |
| abstract_inverted_index.Seoul | 247, 294 |
| abstract_inverted_index.South | 42, 189, 209, 221 |
| abstract_inverted_index.Tokyo | 261 |
| abstract_inverted_index.area. | 249 |
| abstract_inverted_index.daily | 24 |
| abstract_inverted_index.data, | 63 |
| abstract_inverted_index.depth | 6 |
| abstract_inverted_index.infer | 21 |
| abstract_inverted_index.local | 145 |
| abstract_inverted_index.offer | 351 |
| abstract_inverted_index.often | 279 |
| abstract_inverted_index.other | 62 |
| abstract_inverted_index.shows | 234, 262 |
| abstract_inverted_index.sites | 90, 229 |
| abstract_inverted_index.skill | 299 |
| abstract_inverted_index.spots | 225 |
| abstract_inverted_index.these | 156 |
| abstract_inverted_index.three | 79 |
| abstract_inverted_index.urban | 290 |
| abstract_inverted_index.value | 333 |
| abstract_inverted_index.where | 226, 349 |
| abstract_inverted_index.%–32 | 114 |
| abstract_inverted_index.(CMAQ) | 325 |
| abstract_inverted_index.(GOCI) | 15 |
| abstract_inverted_index.China, | 41, 188 |
| abstract_inverted_index.Imager | 14 |
| abstract_inverted_index.Japan. | 45 |
| abstract_inverted_index.Korea, | 43, 190, 348 |
| abstract_inverted_index.Korean | 329 |
| abstract_inverted_index.PM2.5, | 273 |
| abstract_inverted_index.Seoul, | 259 |
| abstract_inverted_index.across | 238 |
| abstract_inverted_index.annual | 123 |
| abstract_inverted_index.except | 241 |
| abstract_inverted_index.fields | 219, 339 |
| abstract_inverted_index.forest | 52 |
| abstract_inverted_index.highly | 101 |
| abstract_inverted_index.matter | 28 |
| abstract_inverted_index.random | 51 |
| abstract_inverted_index.scale. | 316 |
| abstract_inverted_index.series | 256 |
| abstract_inverted_index.steady | 194 |
| abstract_inverted_index.though | 275 |
| abstract_inverted_index.trends | 181 |
| abstract_inverted_index.unique | 353 |
| abstract_inverted_index.values | 125 |
| abstract_inverted_index.within | 160 |
| abstract_inverted_index.(NAAQS) | 154 |
| abstract_inverted_index.(PM2.5) | 29 |
| abstract_inverted_index.10-fold | 97 |
| abstract_inverted_index.Ambient | 150 |
| abstract_inverted_index.Beijing | 296 |
| abstract_inverted_index.Further | 214 |
| abstract_inverted_index.Quality | 152, 324 |
| abstract_inverted_index.aerosol | 4 |
| abstract_inverted_index.applied | 55 |
| abstract_inverted_index.because | 155, 169 |
| abstract_inverted_index.eastern | 40, 187, 206 |
| abstract_inverted_index.encoded | 66 |
| abstract_inverted_index.extreme | 174 |
| abstract_inverted_index.failure | 71 |
| abstract_inverted_index.lacking | 232 |
| abstract_inverted_index.models, | 344 |
| abstract_inverted_index.monthly | 253 |
| abstract_inverted_index.network | 103, 228 |
| abstract_inverted_index.optical | 5 |
| abstract_inverted_index.quality | 308, 343 |
| abstract_inverted_index.spatial | 310 |
| abstract_inverted_index.surface | 25, 199, 203, 227 |
| abstract_inverted_index.testing | 341 |
| abstract_inverted_index.trained | 73 |
| abstract_inverted_index.Beijing, | 258 |
| abstract_inverted_index.National | 149 |
| abstract_inverted_index.Standard | 153 |
| abstract_inverted_index.captures | 268 |
| abstract_inverted_index.country, | 240 |
| abstract_inverted_index.country. | 119 |
| abstract_inverted_index.declines | 196 |
| abstract_inverted_index.entirely | 91 |
| abstract_inverted_index.episodes | 292 |
| abstract_inverted_index.national | 80 |
| abstract_inverted_index.networks | 204 |
| abstract_inverted_index.observed | 269, 303 |
| abstract_inverted_index.opposite | 281 |
| abstract_inverted_index.patterns | 311 |
| abstract_inverted_index.seasonal | 270 |
| abstract_inverted_index.training | 94 |
| abstract_inverted_index.withheld | 92 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Community | 321 |
| abstract_inverted_index.algorithm | 54, 266, 288 |
| abstract_inverted_index.correlate | 100 |
| abstract_inverted_index.decreases | 237 |
| abstract_inverted_index.depending | 116 |
| abstract_inverted_index.exposure. | 213 |
| abstract_inverted_index.including | 64, 345 |
| abstract_inverted_index.initially | 231 |
| abstract_inverted_index.networks, | 200 |
| abstract_inverted_index.networks. | 81 |
| abstract_inverted_index.peninsula | 330 |
| abstract_inverted_index.pollution | 291 |
| abstract_inverted_index.precision | 111, 133 |
| abstract_inverted_index.predicted | 83 |
| abstract_inverted_index.procedure | 99 |
| abstract_inverted_index.resource. | 354 |
| abstract_inverted_index.retrieval | 70 |
| abstract_inverted_index.smoothing | 172 |
| abstract_inverted_index.typically | 159 |
| abstract_inverted_index.Inspection | 250 |
| abstract_inverted_index.Multiscale | 322 |
| abstract_inverted_index.Prediction | 120 |
| abstract_inverted_index.comparison | 318 |
| abstract_inverted_index.consistent | 197 |
| abstract_inverted_index.continuous | 33, 336 |
| abstract_inverted_index.day-to-day | 304 |
| abstract_inverted_index.diagnosing | 144 |
| abstract_inverted_index.gap-filled | 58 |
| abstract_inverted_index.identifies | 223 |
| abstract_inverted_index.instrument | 16 |
| abstract_inverted_index.moderately | 141 |
| abstract_inverted_index.population | 212 |
| abstract_inverted_index.precisions | 163 |
| abstract_inverted_index.resolution | 38 |
| abstract_inverted_index.simulation | 326 |
| abstract_inverted_index.successful | 142 |
| abstract_inverted_index.variations | 271, 305 |
| abstract_inverted_index.2011–2019 | 3 |
| abstract_inverted_index.2015–2019 | 195, 235 |
| abstract_inverted_index.application | 284 |
| abstract_inverted_index.examination | 215 |
| abstract_inverted_index.exceedances | 146, 157 |
| abstract_inverted_index.information | 65 |
| abstract_inverted_index.particulate | 27 |
| abstract_inverted_index.reproducing | 301 |
| abstract_inverted_index.demonstrates | 297, 331 |
| abstract_inverted_index.metropolitan | 248 |
| abstract_inverted_index.observations | 8, 76, 104 |
| abstract_inverted_index.single-value | 110, 132, 162 |
| abstract_inverted_index.successfully | 267 |
| abstract_inverted_index.Geostationary | 11 |
| abstract_inverted_index.area-weighted | 178 |
| abstract_inverted_index.underestimate | 211 |
| abstract_inverted_index.concentrations | 30, 88, 185, 244 |
| abstract_inverted_index.seasonalities. | 282 |
| abstract_inverted_index.concentrations. | 176 |
| abstract_inverted_index.cross-validation | 98 |
| abstract_inverted_index.population-weighted | 180 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5081902731, https://openalex.org/A5050163637 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I136199984, https://openalex.org/I193775966, https://openalex.org/I2250650973 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.93069227 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |