Contrastive Explanations for a Deep Learning Model on Time-Series Data Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-030-59065-9_19
In the last decade, with the irruption of Deep Learning \n(DL), artificial intelligence has risen a step concerning previous years. \nAlthough Deep Learning models have gained strength in many fields like \nimage classification, speech recognition, time-series anomaly detection, \netc. these models are often difficult to understand because of their lack of \ninterpretability. In recent years an effort has been made to understand \nDL models, creating a new research area called Explainable Artificial \nIntelligence (XAI). Most of the research in XAI has been done for image \ndata, and little research has been done in the time-series data field. In this \npaper, a model-agnostic method called Contrastive Explanation Method \n(CEM) is used for interpreting a DL model for time-series classification. \nEven though CEM has been validated in tabular data and image data, \nthe obtained experimental results show that CEM is also suitable for \ninterpreting deep learning models that work with time-series data.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.1007/978-3-030-59065-9_19
- OA Status
- gold
- Cited By
- 10
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3085010542
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3085010542Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/978-3-030-59065-9_19Digital Object Identifier
- Title
-
Contrastive Explanations for a Deep Learning Model on Time-Series DataWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Jokin Labaien, Ekhi Zugasti, Xabier De CarlosList of authors in order
- Landing page
-
https://doi.org/10.1007/978-3-030-59065-9_19Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/10810/70493Direct OA link when available
- Concepts
-
Interpretability, Computer science, Artificial intelligence, Deep learning, Field (mathematics), Series (stratigraphy), Time series, Machine learning, Anomaly detection, Pattern recognition (psychology), Mathematics, Paleontology, Biology, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3, 2023: 1, 2022: 1, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3085010542 |
|---|---|
| doi | https://doi.org/10.1007/978-3-030-59065-9_19 |
| ids.doi | https://doi.org/10.1007/978-3-030-59065-9_19 |
| ids.mag | 3085010542 |
| ids.openalex | https://openalex.org/W3085010542 |
| fwci | 1.04291283 |
| type | book-chapter |
| title | Contrastive Explanations for a Deep Learning Model on Time-Series Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 244 |
| biblio.first_page | 235 |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T13702 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9922999739646912 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list.value | 5000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 5392 |
| apc_paid.value | 5000 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 5392 |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8381209373474121 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.804563581943512 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7130520343780518 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.681555986404419 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C9652623 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5956462025642395 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[4].display_name | Field (mathematics) |
| concepts[5].id | https://openalex.org/C143724316 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5606494545936584 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[5].display_name | Series (stratigraphy) |
| concepts[6].id | https://openalex.org/C151406439 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5106049180030823 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[6].display_name | Time series |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5051611065864563 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C739882 |
| concepts[8].level | 2 |
| concepts[8].score | 0.433590292930603 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[8].display_name | Anomaly detection |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.32530534267425537 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.060688316822052 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C151730666 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[11].display_name | Paleontology |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C202444582 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[13].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.8381209373474121 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.804563581943512 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7130520343780518 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.681555986404419 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/field |
| keywords[4].score | 0.5956462025642395 |
| keywords[4].display_name | Field (mathematics) |
| keywords[5].id | https://openalex.org/keywords/series |
| keywords[5].score | 0.5606494545936584 |
| keywords[5].display_name | Series (stratigraphy) |
| keywords[6].id | https://openalex.org/keywords/time-series |
| keywords[6].score | 0.5106049180030823 |
| keywords[6].display_name | Time series |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5051611065864563 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/anomaly-detection |
| keywords[8].score | 0.433590292930603 |
| keywords[8].display_name | Anomaly detection |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.32530534267425537 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.060688316822052 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1007/978-3-030-59065-9_19 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S106296714 |
| locations[0].source.issn | 0302-9743, 1611-3349 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0302-9743 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Lecture notes in computer science |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Lecture Notes in Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1007/978-3-030-59065-9_19 |
| locations[1].id | pmh:oai:addi.ehu.eus:10810/70493 |
| locations[1].is_oa | True |
| locations[1].source | |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10810/70493 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043931850 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5367-4223 |
| authorships[0].author.display_name | Jokin Labaien |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210121514, https://openalex.org/I4210140267 |
| authorships[0].affiliations[0].raw_affiliation_string | Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), P◦ J.M. Arizmediarrieta, 2, 20500, Arrasate-Mondragón, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I4210121514 |
| authorships[0].institutions[0].ror | https://ror.org/02pwsw017 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210121514 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | GAIKER Technology Centre |
| authorships[0].institutions[1].id | https://openalex.org/I4210140267 |
| authorships[0].institutions[1].ror | https://ror.org/03hp1m080 |
| authorships[0].institutions[1].type | company |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210140267 |
| authorships[0].institutions[1].country_code | ES |
| authorships[0].institutions[1].display_name | Ikerlan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jokin Labaien |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), P◦ J.M. Arizmediarrieta, 2, 20500, Arrasate-Mondragón, Spain |
| authorships[1].author.id | https://openalex.org/A5020252362 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8506-5695 |
| authorships[1].author.display_name | Ekhi Zugasti |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162361429 |
| authorships[1].affiliations[0].raw_affiliation_string | Data Analysis and Cybersecurity Group, Mondragon University, 20500, Arrasate-Mondragón, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I162361429 |
| authorships[1].institutions[0].ror | https://ror.org/00wvqgd19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162361429, https://openalex.org/I4210092206 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Mondragon Unibertsitatea |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ekhi Zugasti |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Data Analysis and Cybersecurity Group, Mondragon University, 20500, Arrasate-Mondragón, Spain |
| authorships[2].author.id | https://openalex.org/A5076020515 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9444-9313 |
| authorships[2].author.display_name | Xabier De Carlos |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210121514, https://openalex.org/I4210140267 |
| authorships[2].affiliations[0].raw_affiliation_string | Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), P◦ J.M. Arizmediarrieta, 2, 20500, Arrasate-Mondragón, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I4210121514 |
| authorships[2].institutions[0].ror | https://ror.org/02pwsw017 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210121514 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | GAIKER Technology Centre |
| authorships[2].institutions[1].id | https://openalex.org/I4210140267 |
| authorships[2].institutions[1].ror | https://ror.org/03hp1m080 |
| authorships[2].institutions[1].type | company |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210140267 |
| authorships[2].institutions[1].country_code | ES |
| authorships[2].institutions[1].display_name | Ikerlan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Xabier De Carlos |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA), P◦ J.M. Arizmediarrieta, 2, 20500, Arrasate-Mondragón, Spain |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/10810/70493 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Contrastive Explanations for a Deep Learning Model on Time-Series Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W3190511629, https://openalex.org/W2119012848, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:addi.ehu.eus:10810/70493 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/conferenceObject |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/10810/70493 |
| primary_location.id | doi:10.1007/978-3-030-59065-9_19 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S106296714 |
| primary_location.source.issn | 0302-9743, 1611-3349 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0302-9743 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Lecture notes in computer science |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Lecture Notes in Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1007/978-3-030-59065-9_19 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2891503716, https://openalex.org/W2981731882, https://openalex.org/W1787224781, https://openalex.org/W2100556411, https://openalex.org/W2789160704, https://openalex.org/W2985323229, https://openalex.org/W3005245032, https://openalex.org/W2064675550, https://openalex.org/W2282821441, https://openalex.org/W2894821558, https://openalex.org/W2962858109, https://openalex.org/W2905872298, https://openalex.org/W2953945697, https://openalex.org/W2618851150, https://openalex.org/W2594633041, https://openalex.org/W117096852 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 14, 59, 91, 102 |
| abstract_inverted_index.DL | 103 |
| abstract_inverted_index.In | 0, 47, 89 |
| abstract_inverted_index.an | 50 |
| abstract_inverted_index.in | 25, 71, 84, 113 |
| abstract_inverted_index.is | 98, 125 |
| abstract_inverted_index.of | 7, 43, 68 |
| abstract_inverted_index.to | 40, 55 |
| abstract_inverted_index.CEM | 109, 124 |
| abstract_inverted_index.XAI | 72 |
| abstract_inverted_index.and | 78, 116 |
| abstract_inverted_index.are | 37 |
| abstract_inverted_index.for | 76, 100, 105 |
| abstract_inverted_index.has | 12, 52, 73, 81, 110 |
| abstract_inverted_index.new | 60 |
| abstract_inverted_index.the | 1, 5, 69, 85 |
| abstract_inverted_index.Deep | 8, 19 |
| abstract_inverted_index.Most | 67 |
| abstract_inverted_index.also | 126 |
| abstract_inverted_index.area | 62 |
| abstract_inverted_index.been | 53, 74, 82, 111 |
| abstract_inverted_index.data | 87, 115 |
| abstract_inverted_index.deep | 129 |
| abstract_inverted_index.done | 75, 83 |
| abstract_inverted_index.have | 22 |
| abstract_inverted_index.lack | 45 |
| abstract_inverted_index.last | 2 |
| abstract_inverted_index.made | 54 |
| abstract_inverted_index.many | 26 |
| abstract_inverted_index.show | 122 |
| abstract_inverted_index.step | 15 |
| abstract_inverted_index.that | 123, 132 |
| abstract_inverted_index.used | 99 |
| abstract_inverted_index.with | 4, 134 |
| abstract_inverted_index.work | 133 |
| abstract_inverted_index.data. | 136 |
| abstract_inverted_index.image | 117 |
| abstract_inverted_index.model | 104 |
| abstract_inverted_index.often | 38 |
| abstract_inverted_index.risen | 13 |
| abstract_inverted_index.their | 44 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.years | 49 |
| abstract_inverted_index.(XAI). | 66 |
| abstract_inverted_index.called | 63, 94 |
| abstract_inverted_index.effort | 51 |
| abstract_inverted_index.field. | 88 |
| abstract_inverted_index.fields | 27 |
| abstract_inverted_index.gained | 23 |
| abstract_inverted_index.little | 79 |
| abstract_inverted_index.method | 93 |
| abstract_inverted_index.models | 21, 36, 131 |
| abstract_inverted_index.recent | 48 |
| abstract_inverted_index.speech | 30 |
| abstract_inverted_index.though | 108 |
| abstract_inverted_index.anomaly | 33 |
| abstract_inverted_index.because | 42 |
| abstract_inverted_index.decade, | 3 |
| abstract_inverted_index.models, | 57 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.tabular | 114 |
| abstract_inverted_index.Learning | 20 |
| abstract_inverted_index.creating | 58 |
| abstract_inverted_index.learning | 130 |
| abstract_inverted_index.obtained | 119 |
| abstract_inverted_index.previous | 17 |
| abstract_inverted_index.research | 61, 70, 80 |
| abstract_inverted_index.strength | 24 |
| abstract_inverted_index.suitable | 127 |
| abstract_inverted_index.difficult | 39 |
| abstract_inverted_index.irruption | 6 |
| abstract_inverted_index.validated | 112 |
| abstract_inverted_index.artificial | 10 |
| abstract_inverted_index.concerning | 16 |
| abstract_inverted_index.understand | 41 |
| abstract_inverted_index.Contrastive | 95 |
| abstract_inverted_index.Explainable | 64 |
| abstract_inverted_index.Explanation | 96 |
| abstract_inverted_index.time-series | 32, 86, 106, 135 |
| abstract_inverted_index.experimental | 120 |
| abstract_inverted_index.intelligence | 11 |
| abstract_inverted_index.interpreting | 101 |
| abstract_inverted_index.recognition, | 31 |
| abstract_inverted_index.model-agnostic | 92 |
| abstract_inverted_index.classification, | 29 |
| abstract_inverted_index.data, \nthe | 118 |
| abstract_inverted_index.like \nimage | 28 |
| abstract_inverted_index.image \ndata, | 77 |
| abstract_inverted_index.this \npaper, | 90 |
| abstract_inverted_index.Method \n(CEM) | 97 |
| abstract_inverted_index.understand \nDL | 56 |
| abstract_inverted_index.Learning \n(DL), | 9 |
| abstract_inverted_index.detection, \netc. | 34 |
| abstract_inverted_index.years. \nAlthough | 18 |
| abstract_inverted_index.for \ninterpreting | 128 |
| abstract_inverted_index.classification. \nEven | 107 |
| abstract_inverted_index.of \ninterpretability. | 46 |
| abstract_inverted_index.Artificial \nIntelligence | 65 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.79696279 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |