Contrastive Private Data Synthesis via Weighted Multi-PLM Fusion Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.00245
Substantial quantity and high quality are the golden rules of making a good training dataset with sample privacy protection equally important. Generating synthetic samples that resemble high-quality private data while ensuring Differential Privacy (DP), a formal privacy guarantee, promises scalability and practicality. However, existing methods relying on pre-trained models for data synthesis %that avoid fine-tuning large pre-trained generative models often struggle in data-deficient scenarios, suffering from limited sample size, inevitable generation noise and existing pre-trained model bias. To address these challenges, we propose a novel contrAstive private data Synthesis via Weighted multiple Pre-trained language models (PLM) framework, named as WASP. WASP utilizes limited private samples for more accurate private data distribution estimation via a Top-Q voting mechanism, and leverages low-quality synthetic samples for contrastive generation via collaboration among dynamically weighted multiple pre-trained models.Extensive experiments on 6 well-developed datasets with 6 open-source and 3 closed-source PLMs demonstrate the superiority of WASP in improving model performance over diverse downstream tasks. Code is available at https://anonymous.4open.science/r/WASP.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.00245
- https://arxiv.org/pdf/2502.00245
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407123372
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407123372Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.00245Digital Object Identifier
- Title
-
Contrastive Private Data Synthesis via Weighted Multi-PLM FusionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-01Full publication date if available
- Authors
-
Tianyuan Zou, Yang Liu, Peng Li, Yisheng Xiong, Jianqing Zhang, Jingjing Liu, Xiaozhou Ye, Ye Ouyang, Yaqin ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.00245Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.00245Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.00245Direct OA link when available
- Concepts
-
Fusion, Computer science, Natural language processing, Artificial intelligence, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407123372 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.00245 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.00245 |
| ids.openalex | https://openalex.org/W4407123372 |
| fwci | |
| type | preprint |
| title | Contrastive Private Data Synthesis via Weighted Multi-PLM Fusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10237 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Cryptography and Data Security |
| topics[1].id | https://openalex.org/T10764 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9908999800682068 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Privacy-Preserving Technologies in Data |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C158525013 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6115403175354004 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[0].display_name | Fusion |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4657116234302521 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.35981371998786926 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3344380855560303 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41895202 |
| concepts[4].level | 1 |
| concepts[4].score | 0.15420415997505188 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[4].display_name | Linguistics |
| concepts[5].id | https://openalex.org/C138885662 |
| concepts[5].level | 0 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[5].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/fusion |
| keywords[0].score | 0.6115403175354004 |
| keywords[0].display_name | Fusion |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4657116234302521 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.35981371998786926 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3344380855560303 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/linguistics |
| keywords[4].score | 0.15420415997505188 |
| keywords[4].display_name | Linguistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.00245 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.00245 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.00245 |
| locations[1].id | doi:10.48550/arxiv.2502.00245 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.00245 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5056834945 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tianyuan Zou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zou, Tianyuan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100760790 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-8210-8864 |
| authorships[1].author.display_name | Yang Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101953295 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-0942-6565 |
| authorships[2].author.display_name | Peng Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Peng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5034903317 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yisheng Xiong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiong, Yufei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5056834769 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-4990-8466 |
| authorships[4].author.display_name | Jianqing Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Jianqing |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100442542 |
| authorships[5].author.orcid | https://orcid.org/0009-0002-6277-5816 |
| authorships[5].author.display_name | Jingjing Liu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liu, Jingjing |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5107230366 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4925-5907 |
| authorships[6].author.display_name | Xiaozhou Ye |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ye, Xiaozhou |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5016317255 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6195-6415 |
| authorships[7].author.display_name | Ye Ouyang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ouyang, Ye |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100663306 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5675-8804 |
| authorships[8].author.display_name | Yaqin Zhang |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Zhang, Ya-Qin |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.00245 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Contrastive Private Data Synthesis via Weighted Multi-PLM Fusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10237 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Cryptography and Data Security |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.00245 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.00245 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.00245 |
| primary_location.id | pmh:oai:arXiv.org:2502.00245 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.00245 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.00245 |
| publication_date | 2025-02-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 142 |
| abstract_inverted_index.6 | 135, 139 |
| abstract_inverted_index.a | 11, 34, 83, 113 |
| abstract_inverted_index.To | 77 |
| abstract_inverted_index.as | 98 |
| abstract_inverted_index.at | 161 |
| abstract_inverted_index.in | 61, 150 |
| abstract_inverted_index.is | 159 |
| abstract_inverted_index.of | 9, 148 |
| abstract_inverted_index.on | 46, 134 |
| abstract_inverted_index.we | 81 |
| abstract_inverted_index.and | 2, 40, 72, 117, 141 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.for | 49, 105, 122 |
| abstract_inverted_index.the | 6, 146 |
| abstract_inverted_index.via | 89, 112, 125 |
| abstract_inverted_index.Code | 158 |
| abstract_inverted_index.PLMs | 144 |
| abstract_inverted_index.WASP | 100, 149 |
| abstract_inverted_index.data | 28, 50, 87, 109 |
| abstract_inverted_index.from | 65 |
| abstract_inverted_index.good | 12 |
| abstract_inverted_index.high | 3 |
| abstract_inverted_index.more | 106 |
| abstract_inverted_index.over | 154 |
| abstract_inverted_index.that | 24 |
| abstract_inverted_index.with | 15, 138 |
| abstract_inverted_index.%that | 52 |
| abstract_inverted_index.(DP), | 33 |
| abstract_inverted_index.(PLM) | 95 |
| abstract_inverted_index.Top-Q | 114 |
| abstract_inverted_index.WASP. | 99 |
| abstract_inverted_index.among | 127 |
| abstract_inverted_index.avoid | 53 |
| abstract_inverted_index.bias. | 76 |
| abstract_inverted_index.large | 55 |
| abstract_inverted_index.model | 75, 152 |
| abstract_inverted_index.named | 97 |
| abstract_inverted_index.noise | 71 |
| abstract_inverted_index.novel | 84 |
| abstract_inverted_index.often | 59 |
| abstract_inverted_index.rules | 8 |
| abstract_inverted_index.size, | 68 |
| abstract_inverted_index.these | 79 |
| abstract_inverted_index.while | 29 |
| abstract_inverted_index.formal | 35 |
| abstract_inverted_index.golden | 7 |
| abstract_inverted_index.making | 10 |
| abstract_inverted_index.models | 48, 58, 94 |
| abstract_inverted_index.sample | 16, 67 |
| abstract_inverted_index.tasks. | 157 |
| abstract_inverted_index.voting | 115 |
| abstract_inverted_index.Privacy | 32 |
| abstract_inverted_index.address | 78 |
| abstract_inverted_index.dataset | 14 |
| abstract_inverted_index.diverse | 155 |
| abstract_inverted_index.equally | 19 |
| abstract_inverted_index.limited | 66, 102 |
| abstract_inverted_index.methods | 44 |
| abstract_inverted_index.privacy | 17, 36 |
| abstract_inverted_index.private | 27, 86, 103, 108 |
| abstract_inverted_index.propose | 82 |
| abstract_inverted_index.quality | 4 |
| abstract_inverted_index.relying | 45 |
| abstract_inverted_index.samples | 23, 104, 121 |
| abstract_inverted_index.However, | 42 |
| abstract_inverted_index.Weighted | 90 |
| abstract_inverted_index.accurate | 107 |
| abstract_inverted_index.datasets | 137 |
| abstract_inverted_index.ensuring | 30 |
| abstract_inverted_index.existing | 43, 73 |
| abstract_inverted_index.language | 93 |
| abstract_inverted_index.multiple | 91, 130 |
| abstract_inverted_index.promises | 38 |
| abstract_inverted_index.quantity | 1 |
| abstract_inverted_index.resemble | 25 |
| abstract_inverted_index.struggle | 60 |
| abstract_inverted_index.training | 13 |
| abstract_inverted_index.utilizes | 101 |
| abstract_inverted_index.weighted | 129 |
| abstract_inverted_index.Synthesis | 88 |
| abstract_inverted_index.available | 160 |
| abstract_inverted_index.improving | 151 |
| abstract_inverted_index.leverages | 118 |
| abstract_inverted_index.suffering | 64 |
| abstract_inverted_index.synthesis | 51 |
| abstract_inverted_index.synthetic | 22, 120 |
| abstract_inverted_index.Generating | 21 |
| abstract_inverted_index.downstream | 156 |
| abstract_inverted_index.estimation | 111 |
| abstract_inverted_index.framework, | 96 |
| abstract_inverted_index.generation | 70, 124 |
| abstract_inverted_index.generative | 57 |
| abstract_inverted_index.guarantee, | 37 |
| abstract_inverted_index.important. | 20 |
| abstract_inverted_index.inevitable | 69 |
| abstract_inverted_index.mechanism, | 116 |
| abstract_inverted_index.protection | 18 |
| abstract_inverted_index.scenarios, | 63 |
| abstract_inverted_index.Pre-trained | 92 |
| abstract_inverted_index.Substantial | 0 |
| abstract_inverted_index.challenges, | 80 |
| abstract_inverted_index.contrAstive | 85 |
| abstract_inverted_index.contrastive | 123 |
| abstract_inverted_index.demonstrate | 145 |
| abstract_inverted_index.dynamically | 128 |
| abstract_inverted_index.experiments | 133 |
| abstract_inverted_index.fine-tuning | 54 |
| abstract_inverted_index.low-quality | 119 |
| abstract_inverted_index.open-source | 140 |
| abstract_inverted_index.performance | 153 |
| abstract_inverted_index.pre-trained | 47, 56, 74, 131 |
| abstract_inverted_index.scalability | 39 |
| abstract_inverted_index.superiority | 147 |
| abstract_inverted_index.Differential | 31 |
| abstract_inverted_index.distribution | 110 |
| abstract_inverted_index.high-quality | 26 |
| abstract_inverted_index.closed-source | 143 |
| abstract_inverted_index.collaboration | 126 |
| abstract_inverted_index.practicality. | 41 |
| abstract_inverted_index.data-deficient | 62 |
| abstract_inverted_index.well-developed | 136 |
| abstract_inverted_index.models.Extensive | 132 |
| abstract_inverted_index.https://anonymous.4open.science/r/WASP. | 162 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |