Control-Aware Trajectory Predictions for Communication-Efficient Drone Swarm Coordination in Cluttered Environments Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.12852
Swarms of Unmanned Aerial Vehicles (UAV) have demonstrated enormous potential in many industrial and commercial applications. However, before deploying UAVs in the real world, it is essential to ensure they can operate safely in complex environments, especially with limited communication capabilities. To address this challenge, we propose a control-aware learning-based trajectory prediction algorithm that can enable communication-efficient UAV swarm control in a cluttered environment. Specifically, our proposed algorithm can enable each UAV to predict the planned trajectories of its neighbors in scenarios with various levels of communication capabilities. The predicted planned trajectories will serve as input to a distributed model predictive control (DMPC) approach. The proposed algorithm combines (1) a trajectory prediction model based on EvolveGCN, a Graph Convolutional Network (GCN) that can handle dynamic graphs, which is further enhanced by compressed messages from adjacent UAVs, and (2) a KKT-informed training approach that applies the Karush-Kuhn-Tucker (KKT) conditions in the training process to encode DMPC information into the trained neural network. We evaluate our proposed algorithm in a funnel-like environment. Results show that the proposed algorithm outperforms state-of-the-art benchmarks, providing close-to-optimal control performance and robustness to limited communication capabilities and measurement noises.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.12852
- https://arxiv.org/pdf/2401.12852
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391212749
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391212749Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.12852Digital Object Identifier
- Title
-
Control-Aware Trajectory Predictions for Communication-Efficient Drone Swarm Coordination in Cluttered EnvironmentsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-23Full publication date if available
- Authors
-
Longhao Yan, Jingyuan Zhou, Kaidi YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.12852Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.12852Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.12852Direct OA link when available
- Concepts
-
Computer science, Karush–Kuhn–Tucker conditions, Robustness (evolution), Trajectory, Drone, Encoder, ENCODE, Artificial intelligence, Real-time computing, Mathematical optimization, Gene, Biochemistry, Genetics, Chemistry, Physics, Biology, Astronomy, Mathematics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391212749 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.12852 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.12852 |
| ids.openalex | https://openalex.org/W4391212749 |
| fwci | |
| type | preprint |
| title | Control-Aware Trajectory Predictions for Communication-Efficient Drone Swarm Coordination in Cluttered Environments |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T10586 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Robotic Path Planning Algorithms |
| topics[2].id | https://openalex.org/T11099 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Autonomous Vehicle Technology and Safety |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7657196521759033 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C50454189 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6658501625061035 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2075125 |
| concepts[1].display_name | Karush–Kuhn–Tucker conditions |
| concepts[2].id | https://openalex.org/C63479239 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6039482355117798 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[2].display_name | Robustness (evolution) |
| concepts[3].id | https://openalex.org/C13662910 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5783142447471619 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[3].display_name | Trajectory |
| concepts[4].id | https://openalex.org/C59519942 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5183706879615784 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q650665 |
| concepts[4].display_name | Drone |
| concepts[5].id | https://openalex.org/C118505674 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43391260504722595 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[5].display_name | Encoder |
| concepts[6].id | https://openalex.org/C66746571 |
| concepts[6].level | 3 |
| concepts[6].score | 0.42671093344688416 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1134833 |
| concepts[6].display_name | ENCODE |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41795527935028076 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C79403827 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3668568432331085 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[8].display_name | Real-time computing |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.17692366242408752 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C55493867 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[11].display_name | Biochemistry |
| concepts[12].id | https://openalex.org/C54355233 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[12].display_name | Genetics |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C1276947 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[16].display_name | Astronomy |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7657196521759033 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/karush–kuhn–tucker-conditions |
| keywords[1].score | 0.6658501625061035 |
| keywords[1].display_name | Karush–Kuhn–Tucker conditions |
| keywords[2].id | https://openalex.org/keywords/robustness |
| keywords[2].score | 0.6039482355117798 |
| keywords[2].display_name | Robustness (evolution) |
| keywords[3].id | https://openalex.org/keywords/trajectory |
| keywords[3].score | 0.5783142447471619 |
| keywords[3].display_name | Trajectory |
| keywords[4].id | https://openalex.org/keywords/drone |
| keywords[4].score | 0.5183706879615784 |
| keywords[4].display_name | Drone |
| keywords[5].id | https://openalex.org/keywords/encoder |
| keywords[5].score | 0.43391260504722595 |
| keywords[5].display_name | Encoder |
| keywords[6].id | https://openalex.org/keywords/encode |
| keywords[6].score | 0.42671093344688416 |
| keywords[6].display_name | ENCODE |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.41795527935028076 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/real-time-computing |
| keywords[8].score | 0.3668568432331085 |
| keywords[8].display_name | Real-time computing |
| keywords[9].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[9].score | 0.17692366242408752 |
| keywords[9].display_name | Mathematical optimization |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.12852 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.12852 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.12852 |
| locations[1].id | doi:10.48550/arxiv.2401.12852 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.12852 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100551367 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Longhao Yan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yan, Longhao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5082705388 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0061-219X |
| authorships[1].author.display_name | Jingyuan Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhou, Jingyuan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5075233338 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5120-2866 |
| authorships[2].author.display_name | Kaidi Yang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yang, Kaidi |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.12852 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Control-Aware Trajectory Predictions for Communication-Efficient Drone Swarm Coordination in Cluttered Environments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W2155858901, https://openalex.org/W4382519099, https://openalex.org/W2491194410, https://openalex.org/W1515727993, https://openalex.org/W2037179686, https://openalex.org/W2802398440, https://openalex.org/W2085074295, https://openalex.org/W2560333314, https://openalex.org/W2732076076, https://openalex.org/W2275988210 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.12852 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.12852 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.12852 |
| primary_location.id | pmh:oai:arXiv.org:2401.12852 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.12852 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.12852 |
| publication_date | 2024-01-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 47, 61, 97, 109, 116, 138, 167 |
| abstract_inverted_index.To | 41 |
| abstract_inverted_index.We | 161 |
| abstract_inverted_index.as | 94 |
| abstract_inverted_index.by | 130 |
| abstract_inverted_index.in | 10, 20, 33, 60, 80, 148, 166 |
| abstract_inverted_index.is | 25, 127 |
| abstract_inverted_index.it | 24 |
| abstract_inverted_index.of | 1, 77, 85 |
| abstract_inverted_index.on | 114 |
| abstract_inverted_index.to | 27, 72, 96, 152, 185 |
| abstract_inverted_index.we | 45 |
| abstract_inverted_index.(1) | 108 |
| abstract_inverted_index.(2) | 137 |
| abstract_inverted_index.The | 88, 104 |
| abstract_inverted_index.UAV | 57, 71 |
| abstract_inverted_index.and | 13, 136, 183, 189 |
| abstract_inverted_index.can | 30, 54, 68, 122 |
| abstract_inverted_index.its | 78 |
| abstract_inverted_index.our | 65, 163 |
| abstract_inverted_index.the | 21, 74, 144, 149, 157, 173 |
| abstract_inverted_index.DMPC | 154 |
| abstract_inverted_index.UAVs | 19 |
| abstract_inverted_index.each | 70 |
| abstract_inverted_index.from | 133 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.into | 156 |
| abstract_inverted_index.many | 11 |
| abstract_inverted_index.real | 22 |
| abstract_inverted_index.show | 171 |
| abstract_inverted_index.that | 53, 121, 142, 172 |
| abstract_inverted_index.they | 29 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.will | 92 |
| abstract_inverted_index.with | 37, 82 |
| abstract_inverted_index.(GCN) | 120 |
| abstract_inverted_index.(KKT) | 146 |
| abstract_inverted_index.(UAV) | 5 |
| abstract_inverted_index.Graph | 117 |
| abstract_inverted_index.UAVs, | 135 |
| abstract_inverted_index.based | 113 |
| abstract_inverted_index.input | 95 |
| abstract_inverted_index.model | 99, 112 |
| abstract_inverted_index.serve | 93 |
| abstract_inverted_index.swarm | 58 |
| abstract_inverted_index.which | 126 |
| abstract_inverted_index.(DMPC) | 102 |
| abstract_inverted_index.Aerial | 3 |
| abstract_inverted_index.Swarms | 0 |
| abstract_inverted_index.before | 17 |
| abstract_inverted_index.enable | 55, 69 |
| abstract_inverted_index.encode | 153 |
| abstract_inverted_index.ensure | 28 |
| abstract_inverted_index.handle | 123 |
| abstract_inverted_index.levels | 84 |
| abstract_inverted_index.neural | 159 |
| abstract_inverted_index.safely | 32 |
| abstract_inverted_index.world, | 23 |
| abstract_inverted_index.Network | 119 |
| abstract_inverted_index.Results | 170 |
| abstract_inverted_index.address | 42 |
| abstract_inverted_index.applies | 143 |
| abstract_inverted_index.complex | 34 |
| abstract_inverted_index.control | 59, 101, 181 |
| abstract_inverted_index.dynamic | 124 |
| abstract_inverted_index.further | 128 |
| abstract_inverted_index.graphs, | 125 |
| abstract_inverted_index.limited | 38, 186 |
| abstract_inverted_index.noises. | 191 |
| abstract_inverted_index.operate | 31 |
| abstract_inverted_index.planned | 75, 90 |
| abstract_inverted_index.predict | 73 |
| abstract_inverted_index.process | 151 |
| abstract_inverted_index.propose | 46 |
| abstract_inverted_index.trained | 158 |
| abstract_inverted_index.various | 83 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.Unmanned | 2 |
| abstract_inverted_index.Vehicles | 4 |
| abstract_inverted_index.adjacent | 134 |
| abstract_inverted_index.approach | 141 |
| abstract_inverted_index.combines | 107 |
| abstract_inverted_index.enhanced | 129 |
| abstract_inverted_index.enormous | 8 |
| abstract_inverted_index.evaluate | 162 |
| abstract_inverted_index.messages | 132 |
| abstract_inverted_index.network. | 160 |
| abstract_inverted_index.proposed | 66, 105, 164, 174 |
| abstract_inverted_index.training | 140, 150 |
| abstract_inverted_index.algorithm | 52, 67, 106, 165, 175 |
| abstract_inverted_index.approach. | 103 |
| abstract_inverted_index.cluttered | 62 |
| abstract_inverted_index.deploying | 18 |
| abstract_inverted_index.essential | 26 |
| abstract_inverted_index.neighbors | 79 |
| abstract_inverted_index.potential | 9 |
| abstract_inverted_index.predicted | 89 |
| abstract_inverted_index.providing | 179 |
| abstract_inverted_index.scenarios | 81 |
| abstract_inverted_index.EvolveGCN, | 115 |
| abstract_inverted_index.challenge, | 44 |
| abstract_inverted_index.commercial | 14 |
| abstract_inverted_index.compressed | 131 |
| abstract_inverted_index.conditions | 147 |
| abstract_inverted_index.especially | 36 |
| abstract_inverted_index.industrial | 12 |
| abstract_inverted_index.prediction | 51, 111 |
| abstract_inverted_index.predictive | 100 |
| abstract_inverted_index.robustness | 184 |
| abstract_inverted_index.trajectory | 50, 110 |
| abstract_inverted_index.benchmarks, | 178 |
| abstract_inverted_index.distributed | 98 |
| abstract_inverted_index.funnel-like | 168 |
| abstract_inverted_index.information | 155 |
| abstract_inverted_index.measurement | 190 |
| abstract_inverted_index.outperforms | 176 |
| abstract_inverted_index.performance | 182 |
| abstract_inverted_index.KKT-informed | 139 |
| abstract_inverted_index.capabilities | 188 |
| abstract_inverted_index.demonstrated | 7 |
| abstract_inverted_index.environment. | 63, 169 |
| abstract_inverted_index.trajectories | 76, 91 |
| abstract_inverted_index.Convolutional | 118 |
| abstract_inverted_index.Specifically, | 64 |
| abstract_inverted_index.applications. | 15 |
| abstract_inverted_index.capabilities. | 40, 87 |
| abstract_inverted_index.communication | 39, 86, 187 |
| abstract_inverted_index.control-aware | 48 |
| abstract_inverted_index.environments, | 35 |
| abstract_inverted_index.learning-based | 49 |
| abstract_inverted_index.close-to-optimal | 180 |
| abstract_inverted_index.state-of-the-art | 177 |
| abstract_inverted_index.Karush-Kuhn-Tucker | 145 |
| abstract_inverted_index.communication-efficient | 56 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |