Control strategy of robotic manipulator based on multi-task reinforcement learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s40747-025-01816-w
Multi-task learning is important in reinforcement learning where simultaneously training across different tasks allows for leveraging shared information among them, typically leading to better performance than single-task learning. While joint training of multiple tasks permits parameter sharing between tasks, the optimization challenge becomes crucial—identifying which parameters should be reused and managing potential gradient conflicts arising from different tasks. To tackle this issue, instead of uniform parameter sharing, we propose an adjudicate reconfiguration network model, which we integrate into the Soft Actor-Critic (SAC) algorithm to address the optimization problems brought about by parameter sharing in multi-task reinforcement learning algorithms. The decision reconstruction network model is designed to achieve cross-network layer information exchange between network layers by dynamically adjusting and reconfiguring the network hierarchy, which can overcome the inherent limitations of traditional network architecture in handling multitasking scenarios. The SAC algorithm based on the decision reconstruction network model can achieve simultaneous training in multiple tasks, effectively learning and integrating relevant knowledge of each task. Finally, the proposed algorithm is evaluated in a multi-task environment of the Meta-World, a benchmark for multi-task reinforcement learning containing robotic manipulation tasks, and the multi-task MUJOCO environment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s40747-025-01816-w
- OA Status
- gold
- Cited By
- 1
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407743178
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407743178Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s40747-025-01816-wDigital Object Identifier
- Title
-
Control strategy of robotic manipulator based on multi-task reinforcement learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-19Full publication date if available
- Authors
-
Tao Wang, Zhijie Ruan, Yuyan Wang, Chong ChenList of authors in order
- Landing page
-
https://doi.org/10.1007/s40747-025-01816-wPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1007/s40747-025-01816-wDirect OA link when available
- Concepts
-
Reinforcement learning, Computational intelligence, Task (project management), Robot manipulator, Manipulator (device), Computer science, Control (management), Artificial intelligence, Control engineering, Engineering, Robot, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407743178 |
|---|---|
| doi | https://doi.org/10.1007/s40747-025-01816-w |
| ids.doi | https://doi.org/10.1007/s40747-025-01816-w |
| ids.openalex | https://openalex.org/W4407743178 |
| fwci | 3.71677326 |
| type | article |
| title | Control strategy of robotic manipulator based on multi-task reinforcement learning |
| awards[0].id | https://openalex.org/G3681786102 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62302103 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 3 |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14011 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9663000106811523 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Elevator Systems and Control |
| topics[1].id | https://openalex.org/T14225 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9656000137329102 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Sensor and Control Systems |
| topics[2].id | https://openalex.org/T13717 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9575999975204468 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Advanced Algorithms and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1320 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1619 |
| apc_paid.value | 1320 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1619 |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8211868405342102 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C139502532 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7196786403656006 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1122090 |
| concepts[1].display_name | Computational intelligence |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7185021638870239 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C2985527887 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6553295850753784 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1587588 |
| concepts[3].display_name | Robot manipulator |
| concepts[4].id | https://openalex.org/C2781347998 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6461349129676819 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1587588 |
| concepts[4].display_name | Manipulator (device) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.567546010017395 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C2775924081 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5370086431503296 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[6].display_name | Control (management) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.49991393089294434 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C133731056 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4502609372138977 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[8].display_name | Control engineering |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.32715296745300293 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C90509273 |
| concepts[10].level | 2 |
| concepts[10].score | 0.20889025926589966 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[10].display_name | Robot |
| concepts[11].id | https://openalex.org/C201995342 |
| concepts[11].level | 1 |
| concepts[11].score | 0.12586891651153564 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[11].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.8211868405342102 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computational-intelligence |
| keywords[1].score | 0.7196786403656006 |
| keywords[1].display_name | Computational intelligence |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.7185021638870239 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/robot-manipulator |
| keywords[3].score | 0.6553295850753784 |
| keywords[3].display_name | Robot manipulator |
| keywords[4].id | https://openalex.org/keywords/manipulator |
| keywords[4].score | 0.6461349129676819 |
| keywords[4].display_name | Manipulator (device) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.567546010017395 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/control |
| keywords[6].score | 0.5370086431503296 |
| keywords[6].display_name | Control (management) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.49991393089294434 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/control-engineering |
| keywords[8].score | 0.4502609372138977 |
| keywords[8].display_name | Control engineering |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.32715296745300293 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/robot |
| keywords[10].score | 0.20889025926589966 |
| keywords[10].display_name | Robot |
| keywords[11].id | https://openalex.org/keywords/systems-engineering |
| keywords[11].score | 0.12586891651153564 |
| keywords[11].display_name | Systems engineering |
| language | en |
| locations[0].id | doi:10.1007/s40747-025-01816-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3035462843 |
| locations[0].source.issn | 2198-6053, 2199-4536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2198-6053 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Complex & Intelligent Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Complex & Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s40747-025-01816-w |
| locations[1].id | pmh:oai:doaj.org/article:2566810bb3e94573b3e7aac588d9b338 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Complex & Intelligent Systems, Vol 11, Iss 3, Pp 1-14 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/2566810bb3e94573b3e7aac588d9b338 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100453544 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5121-0599 |
| authorships[0].author.display_name | Tao Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tao Wang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113346766 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhijie Ruan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ziming Ruan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100677212 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5585-3789 |
| authorships[2].author.display_name | Yuyan Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuyan Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100348801 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2800-4647 |
| authorships[3].author.display_name | Chong Chen |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chong Chen |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1007/s40747-025-01816-w |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Control strategy of robotic manipulator based on multi-task reinforcement learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14011 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9663000106811523 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Elevator Systems and Control |
| related_works | https://openalex.org/W2391397427, https://openalex.org/W1996341361, https://openalex.org/W4366609476, https://openalex.org/W2078127841, https://openalex.org/W2919815400, https://openalex.org/W2156518980, https://openalex.org/W2362551533, https://openalex.org/W2386777533, https://openalex.org/W4403420403, https://openalex.org/W2093621301 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s40747-025-01816-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3035462843 |
| best_oa_location.source.issn | 2198-6053, 2199-4536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2198-6053 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Complex & Intelligent Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Complex & Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s40747-025-01816-w |
| primary_location.id | doi:10.1007/s40747-025-01816-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3035462843 |
| primary_location.source.issn | 2198-6053, 2199-4536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2198-6053 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Complex & Intelligent Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Complex & Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s40747-025-01816-w |
| publication_date | 2025-02-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4205578260, https://openalex.org/W4319833529, https://openalex.org/W4206668048, https://openalex.org/W3156492906, https://openalex.org/W4379983844, https://openalex.org/W6606882031, https://openalex.org/W3192970068, https://openalex.org/W4401754514, https://openalex.org/W4392499083, https://openalex.org/W4391360925, https://openalex.org/W4382239700, https://openalex.org/W4387745175, https://openalex.org/W3197128667, https://openalex.org/W3141797743, https://openalex.org/W4388816578, https://openalex.org/W4376269829, https://openalex.org/W4321180396, https://openalex.org/W4285214238, https://openalex.org/W3128096387, https://openalex.org/W4319300241, https://openalex.org/W4313178149, https://openalex.org/W3175547386, https://openalex.org/W2963216850, https://openalex.org/W4386075489, https://openalex.org/W3022652760, https://openalex.org/W6814003322 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 170, 176 |
| abstract_inverted_index.To | 59 |
| abstract_inverted_index.an | 70 |
| abstract_inverted_index.be | 48 |
| abstract_inverted_index.by | 91, 115 |
| abstract_inverted_index.in | 5, 94, 133, 151, 169 |
| abstract_inverted_index.is | 3, 104, 167 |
| abstract_inverted_index.of | 32, 64, 129, 160, 173 |
| abstract_inverted_index.on | 141 |
| abstract_inverted_index.to | 23, 84, 106 |
| abstract_inverted_index.we | 68, 76 |
| abstract_inverted_index.SAC | 138 |
| abstract_inverted_index.The | 99, 137 |
| abstract_inverted_index.and | 50, 118, 156, 186 |
| abstract_inverted_index.can | 124, 147 |
| abstract_inverted_index.for | 15, 178 |
| abstract_inverted_index.the | 40, 79, 86, 120, 126, 142, 164, 174, 187 |
| abstract_inverted_index.Soft | 80 |
| abstract_inverted_index.each | 161 |
| abstract_inverted_index.from | 56 |
| abstract_inverted_index.into | 78 |
| abstract_inverted_index.than | 26 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.(SAC) | 82 |
| abstract_inverted_index.While | 29 |
| abstract_inverted_index.about | 90 |
| abstract_inverted_index.among | 19 |
| abstract_inverted_index.based | 140 |
| abstract_inverted_index.joint | 30 |
| abstract_inverted_index.layer | 109 |
| abstract_inverted_index.model | 103, 146 |
| abstract_inverted_index.task. | 162 |
| abstract_inverted_index.tasks | 13, 34 |
| abstract_inverted_index.them, | 20 |
| abstract_inverted_index.where | 8 |
| abstract_inverted_index.which | 45, 75, 123 |
| abstract_inverted_index.MUJOCO | 189 |
| abstract_inverted_index.across | 11 |
| abstract_inverted_index.allows | 14 |
| abstract_inverted_index.better | 24 |
| abstract_inverted_index.issue, | 62 |
| abstract_inverted_index.layers | 114 |
| abstract_inverted_index.model, | 74 |
| abstract_inverted_index.reused | 49 |
| abstract_inverted_index.shared | 17 |
| abstract_inverted_index.should | 47 |
| abstract_inverted_index.tackle | 60 |
| abstract_inverted_index.tasks, | 39, 153, 185 |
| abstract_inverted_index.tasks. | 58 |
| abstract_inverted_index.achieve | 107, 148 |
| abstract_inverted_index.address | 85 |
| abstract_inverted_index.arising | 55 |
| abstract_inverted_index.becomes | 43 |
| abstract_inverted_index.between | 38, 112 |
| abstract_inverted_index.brought | 89 |
| abstract_inverted_index.instead | 63 |
| abstract_inverted_index.leading | 22 |
| abstract_inverted_index.network | 73, 102, 113, 121, 131, 145 |
| abstract_inverted_index.permits | 35 |
| abstract_inverted_index.propose | 69 |
| abstract_inverted_index.robotic | 183 |
| abstract_inverted_index.sharing | 37, 93 |
| abstract_inverted_index.uniform | 65 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 163 |
| abstract_inverted_index.decision | 100, 143 |
| abstract_inverted_index.designed | 105 |
| abstract_inverted_index.exchange | 111 |
| abstract_inverted_index.gradient | 53 |
| abstract_inverted_index.handling | 134 |
| abstract_inverted_index.inherent | 127 |
| abstract_inverted_index.learning | 2, 7, 97, 155, 181 |
| abstract_inverted_index.managing | 51 |
| abstract_inverted_index.multiple | 33, 152 |
| abstract_inverted_index.overcome | 125 |
| abstract_inverted_index.problems | 88 |
| abstract_inverted_index.proposed | 165 |
| abstract_inverted_index.relevant | 158 |
| abstract_inverted_index.sharing, | 67 |
| abstract_inverted_index.training | 10, 31, 150 |
| abstract_inverted_index.adjusting | 117 |
| abstract_inverted_index.algorithm | 83, 139, 166 |
| abstract_inverted_index.benchmark | 177 |
| abstract_inverted_index.challenge | 42 |
| abstract_inverted_index.conflicts | 54 |
| abstract_inverted_index.different | 12, 57 |
| abstract_inverted_index.evaluated | 168 |
| abstract_inverted_index.important | 4 |
| abstract_inverted_index.integrate | 77 |
| abstract_inverted_index.knowledge | 159 |
| abstract_inverted_index.learning. | 28 |
| abstract_inverted_index.parameter | 36, 66, 92 |
| abstract_inverted_index.potential | 52 |
| abstract_inverted_index.typically | 21 |
| abstract_inverted_index.Multi-task | 1 |
| abstract_inverted_index.adjudicate | 71 |
| abstract_inverted_index.containing | 182 |
| abstract_inverted_index.hierarchy, | 122 |
| abstract_inverted_index.leveraging | 16 |
| abstract_inverted_index.multi-task | 95, 171, 179, 188 |
| abstract_inverted_index.parameters | 46 |
| abstract_inverted_index.scenarios. | 136 |
| abstract_inverted_index.Meta-World, | 175 |
| abstract_inverted_index.algorithms. | 98 |
| abstract_inverted_index.dynamically | 116 |
| abstract_inverted_index.effectively | 154 |
| abstract_inverted_index.environment | 172 |
| abstract_inverted_index.information | 18, 110 |
| abstract_inverted_index.integrating | 157 |
| abstract_inverted_index.limitations | 128 |
| abstract_inverted_index.performance | 25 |
| abstract_inverted_index.single-task | 27 |
| abstract_inverted_index.traditional | 130 |
| abstract_inverted_index.Actor-Critic | 81 |
| abstract_inverted_index.architecture | 132 |
| abstract_inverted_index.environment. | 190 |
| abstract_inverted_index.manipulation | 184 |
| abstract_inverted_index.multitasking | 135 |
| abstract_inverted_index.optimization | 41, 87 |
| abstract_inverted_index.simultaneous | 149 |
| abstract_inverted_index.cross-network | 108 |
| abstract_inverted_index.reconfiguring | 119 |
| abstract_inverted_index.reinforcement | 6, 96, 180 |
| abstract_inverted_index.reconstruction | 101, 144 |
| abstract_inverted_index.simultaneously | 9 |
| abstract_inverted_index.reconfiguration | 72 |
| abstract_inverted_index.crucial—identifying | 44 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.8142317 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |