Controllable Motion Generation via Diffusion Modal Coupling Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.02353
Diffusion models have recently gained significant attention in robotics due to their ability to generate multi-modal distributions of system states and behaviors. However, a key challenge remains: ensuring precise control over the generated outcomes without compromising realism. This is crucial for applications such as motion planning or trajectory forecasting, where adherence to physical constraints and task-specific objectives is essential. We propose a novel framework that enhances controllability in diffusion models by leveraging multi-modal prior distributions and enforcing strong modal coupling. This allows us to initiate the denoising process directly from distinct prior modes that correspond to different possible system behaviors, ensuring sampling to align with the training distribution. We evaluate our approach on motion prediction using the Waymo dataset and multi-task control in Maze2D environments. Experimental results show that our framework outperforms both guidance-based techniques and conditioned models with unimodal priors, achieving superior fidelity, diversity, and controllability, even in the absence of explicit conditioning. Overall, our approach provides a more reliable and scalable solution for controllable motion generation in robotics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.02353
- https://arxiv.org/pdf/2503.02353
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415334851
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415334851Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.02353Digital Object Identifier
- Title
-
Controllable Motion Generation via Diffusion Modal CouplingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-04Full publication date if available
- Authors
-
Luobin Wang, Hongzhan Yu, Chen‐Chieh Yu, Sicun Gao, Henrik Reintoft ChristensenList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.02353Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.02353Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.02353Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415334851 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.02353 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.02353 |
| ids.openalex | https://openalex.org/W4415334851 |
| fwci | |
| type | preprint |
| title | Controllable Motion Generation via Diffusion Modal Coupling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12290 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9940999746322632 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Human Motion and Animation |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9621000289916992 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9476000070571899 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.02353 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.02353 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.02353 |
| locations[1].id | doi:10.48550/arxiv.2503.02353 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.02353 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5042730143 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-6762-1985 |
| authorships[0].author.display_name | Luobin Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Luobin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038794488 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hongzhan Yu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu, Hongzhan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101689838 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2073-1604 |
| authorships[2].author.display_name | Chen‐Chieh Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu, Chenning |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5081085178 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2524-4960 |
| authorships[3].author.display_name | Sicun Gao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gao, Sicun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5000120635 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4807-4303 |
| authorships[4].author.display_name | Henrik Reintoft Christensen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Christensen, Henrik |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.02353 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | Controllable Motion Generation via Diffusion Modal Coupling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12290 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9940999746322632 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Human Motion and Animation |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.02353 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.02353 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.02353 |
| primary_location.id | pmh:oai:arXiv.org:2503.02353 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.02353 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.02353 |
| publication_date | 2025-03-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 23, 61, 158 |
| abstract_inverted_index.We | 59, 108 |
| abstract_inverted_index.as | 43 |
| abstract_inverted_index.by | 70 |
| abstract_inverted_index.in | 7, 67, 122, 148, 168 |
| abstract_inverted_index.is | 38, 57 |
| abstract_inverted_index.of | 17, 151 |
| abstract_inverted_index.on | 112 |
| abstract_inverted_index.or | 46 |
| abstract_inverted_index.to | 10, 13, 51, 83, 95, 102 |
| abstract_inverted_index.us | 82 |
| abstract_inverted_index.and | 20, 54, 75, 119, 135, 145, 161 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.for | 40, 164 |
| abstract_inverted_index.key | 24 |
| abstract_inverted_index.our | 110, 129, 155 |
| abstract_inverted_index.the | 31, 85, 105, 116, 149 |
| abstract_inverted_index.This | 37, 80 |
| abstract_inverted_index.both | 132 |
| abstract_inverted_index.even | 147 |
| abstract_inverted_index.from | 89 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.more | 159 |
| abstract_inverted_index.over | 30 |
| abstract_inverted_index.show | 127 |
| abstract_inverted_index.such | 42 |
| abstract_inverted_index.that | 64, 93, 128 |
| abstract_inverted_index.with | 104, 138 |
| abstract_inverted_index.Waymo | 117 |
| abstract_inverted_index.align | 103 |
| abstract_inverted_index.modal | 78 |
| abstract_inverted_index.modes | 92 |
| abstract_inverted_index.novel | 62 |
| abstract_inverted_index.prior | 73, 91 |
| abstract_inverted_index.their | 11 |
| abstract_inverted_index.using | 115 |
| abstract_inverted_index.where | 49 |
| abstract_inverted_index.Maze2D | 123 |
| abstract_inverted_index.allows | 81 |
| abstract_inverted_index.gained | 4 |
| abstract_inverted_index.models | 1, 69, 137 |
| abstract_inverted_index.motion | 44, 113, 166 |
| abstract_inverted_index.states | 19 |
| abstract_inverted_index.strong | 77 |
| abstract_inverted_index.system | 18, 98 |
| abstract_inverted_index.ability | 12 |
| abstract_inverted_index.absence | 150 |
| abstract_inverted_index.control | 29, 121 |
| abstract_inverted_index.crucial | 39 |
| abstract_inverted_index.dataset | 118 |
| abstract_inverted_index.precise | 28 |
| abstract_inverted_index.priors, | 140 |
| abstract_inverted_index.process | 87 |
| abstract_inverted_index.propose | 60 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.without | 34 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.Overall, | 154 |
| abstract_inverted_index.approach | 111, 156 |
| abstract_inverted_index.directly | 88 |
| abstract_inverted_index.distinct | 90 |
| abstract_inverted_index.enhances | 65 |
| abstract_inverted_index.ensuring | 27, 100 |
| abstract_inverted_index.evaluate | 109 |
| abstract_inverted_index.explicit | 152 |
| abstract_inverted_index.generate | 14 |
| abstract_inverted_index.initiate | 84 |
| abstract_inverted_index.outcomes | 33 |
| abstract_inverted_index.physical | 52 |
| abstract_inverted_index.planning | 45 |
| abstract_inverted_index.possible | 97 |
| abstract_inverted_index.provides | 157 |
| abstract_inverted_index.realism. | 36 |
| abstract_inverted_index.recently | 3 |
| abstract_inverted_index.reliable | 160 |
| abstract_inverted_index.remains: | 26 |
| abstract_inverted_index.robotics | 8 |
| abstract_inverted_index.sampling | 101 |
| abstract_inverted_index.scalable | 162 |
| abstract_inverted_index.solution | 163 |
| abstract_inverted_index.superior | 142 |
| abstract_inverted_index.training | 106 |
| abstract_inverted_index.unimodal | 139 |
| abstract_inverted_index.Diffusion | 0 |
| abstract_inverted_index.achieving | 141 |
| abstract_inverted_index.adherence | 50 |
| abstract_inverted_index.attention | 6 |
| abstract_inverted_index.challenge | 25 |
| abstract_inverted_index.coupling. | 79 |
| abstract_inverted_index.denoising | 86 |
| abstract_inverted_index.different | 96 |
| abstract_inverted_index.diffusion | 68 |
| abstract_inverted_index.enforcing | 76 |
| abstract_inverted_index.fidelity, | 143 |
| abstract_inverted_index.framework | 63, 130 |
| abstract_inverted_index.generated | 32 |
| abstract_inverted_index.robotics. | 169 |
| abstract_inverted_index.behaviors, | 99 |
| abstract_inverted_index.behaviors. | 21 |
| abstract_inverted_index.correspond | 94 |
| abstract_inverted_index.diversity, | 144 |
| abstract_inverted_index.essential. | 58 |
| abstract_inverted_index.generation | 167 |
| abstract_inverted_index.leveraging | 71 |
| abstract_inverted_index.multi-task | 120 |
| abstract_inverted_index.objectives | 56 |
| abstract_inverted_index.prediction | 114 |
| abstract_inverted_index.techniques | 134 |
| abstract_inverted_index.trajectory | 47 |
| abstract_inverted_index.conditioned | 136 |
| abstract_inverted_index.constraints | 53 |
| abstract_inverted_index.multi-modal | 15, 72 |
| abstract_inverted_index.outperforms | 131 |
| abstract_inverted_index.significant | 5 |
| abstract_inverted_index.Experimental | 125 |
| abstract_inverted_index.applications | 41 |
| abstract_inverted_index.compromising | 35 |
| abstract_inverted_index.controllable | 165 |
| abstract_inverted_index.forecasting, | 48 |
| abstract_inverted_index.conditioning. | 153 |
| abstract_inverted_index.distribution. | 107 |
| abstract_inverted_index.distributions | 16, 74 |
| abstract_inverted_index.environments. | 124 |
| abstract_inverted_index.task-specific | 55 |
| abstract_inverted_index.guidance-based | 133 |
| abstract_inverted_index.controllability | 66 |
| abstract_inverted_index.controllability, | 146 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |