Conv-codes: Audio Hashing For Bird Species Classification Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1902.02498
In this work, we propose a supervised, convex representation based audio hashing framework for bird species classification. The proposed framework utilizes archetypal analysis, a matrix factorization technique, to obtain convex-sparse representations of a bird vocalization. These convex representations are hashed using Bloom filters with non-cryptographic hash functions to obtain compact binary codes, designated as conv-codes. The conv-codes extracted from the training examples are clustered using class-specific k-medoids clustering with Jaccard coefficient as the similarity metric. A hash table is populated using the cluster centers as keys while hash values/slots are pointers to the species identification information. During testing, the hash table is searched to find the species information corresponding to a cluster center that exhibits maximum similarity with the test conv-code. Hence, the proposed framework classifies a bird vocalization in the conv-code space and requires no explicit classifier or reconstruction error calculations. Apart from that, based on min-hash and direct addressing, we also propose a variant of the proposed framework that provides faster and effective classification. The performances of both these frameworks are compared with existing bird species classification frameworks on the audio recordings of 50 different bird species.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1902.02498
- https://arxiv.org/pdf/1902.02498
- OA Status
- green
- References
- 19
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2950636868
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2950636868Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1902.02498Digital Object Identifier
- Title
-
Conv-codes: Audio Hashing For Bird Species ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-02-07Full publication date if available
- Authors
-
Anshul Thakur, Pulkit Sharma, Vinayak Abrol, P.K. RajanList of authors in order
- Landing page
-
https://arxiv.org/abs/1902.02498Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1902.02498Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1902.02498Direct OA link when available
- Concepts
-
Hash function, Hash table, Computer science, Double hashing, Jaccard index, Locality-sensitive hashing, Universal hashing, Dynamic perfect hashing, Theoretical computer science, Cluster analysis, Pattern recognition (psychology), Data mining, Artificial intelligence, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2950636868 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1902.02498 |
| ids.doi | https://doi.org/10.48550/arxiv.1902.02498 |
| ids.mag | 2950636868 |
| ids.openalex | https://openalex.org/W2950636868 |
| fwci | |
| type | preprint |
| title | Conv-codes: Audio Hashing For Bird Species Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11665 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1309 |
| topics[0].subfield.display_name | Developmental Biology |
| topics[0].display_name | Animal Vocal Communication and Behavior |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9908999800682068 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T10487 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9598000049591064 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1105 |
| topics[2].subfield.display_name | Ecology, Evolution, Behavior and Systematics |
| topics[2].display_name | Plant and animal studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C99138194 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7281918525695801 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q183427 |
| concepts[0].display_name | Hash function |
| concepts[1].id | https://openalex.org/C67388219 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6363499760627747 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q207440 |
| concepts[1].display_name | Hash table |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6149548292160034 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C138111711 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5634762644767761 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q478351 |
| concepts[3].display_name | Double hashing |
| concepts[4].id | https://openalex.org/C203519979 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5379149913787842 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q865360 |
| concepts[4].display_name | Jaccard index |
| concepts[5].id | https://openalex.org/C74270461 |
| concepts[5].level | 4 |
| concepts[5].score | 0.4938271939754486 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1625299 |
| concepts[5].display_name | Locality-sensitive hashing |
| concepts[6].id | https://openalex.org/C116058348 |
| concepts[6].level | 5 |
| concepts[6].score | 0.45477813482284546 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q846912 |
| concepts[6].display_name | Universal hashing |
| concepts[7].id | https://openalex.org/C122907437 |
| concepts[7].level | 5 |
| concepts[7].score | 0.4523395895957947 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5318999 |
| concepts[7].display_name | Dynamic perfect hashing |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.43711191415786743 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C73555534 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4256798326969147 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[9].display_name | Cluster analysis |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4145655035972595 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3324166536331177 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.29191040992736816 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/hash-function |
| keywords[0].score | 0.7281918525695801 |
| keywords[0].display_name | Hash function |
| keywords[1].id | https://openalex.org/keywords/hash-table |
| keywords[1].score | 0.6363499760627747 |
| keywords[1].display_name | Hash table |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6149548292160034 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/double-hashing |
| keywords[3].score | 0.5634762644767761 |
| keywords[3].display_name | Double hashing |
| keywords[4].id | https://openalex.org/keywords/jaccard-index |
| keywords[4].score | 0.5379149913787842 |
| keywords[4].display_name | Jaccard index |
| keywords[5].id | https://openalex.org/keywords/locality-sensitive-hashing |
| keywords[5].score | 0.4938271939754486 |
| keywords[5].display_name | Locality-sensitive hashing |
| keywords[6].id | https://openalex.org/keywords/universal-hashing |
| keywords[6].score | 0.45477813482284546 |
| keywords[6].display_name | Universal hashing |
| keywords[7].id | https://openalex.org/keywords/dynamic-perfect-hashing |
| keywords[7].score | 0.4523395895957947 |
| keywords[7].display_name | Dynamic perfect hashing |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.43711191415786743 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/cluster-analysis |
| keywords[9].score | 0.4256798326969147 |
| keywords[9].display_name | Cluster analysis |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.4145655035972595 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3324166536331177 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.29191040992736816 |
| keywords[12].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1902.02498 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1902.02498 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1902.02498 |
| locations[1].id | mag:2950636868 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | http://arxiv.org/pdf/1902.02498.pdf |
| locations[2].id | doi:10.48550/arxiv.1902.02498 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1902.02498 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101642643 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2859-0634 |
| authorships[0].author.display_name | Anshul Thakur |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9579091 |
| authorships[0].affiliations[0].raw_affiliation_string | Indian Institute of Technology,Mandi |
| authorships[0].institutions[0].id | https://openalex.org/I9579091 |
| authorships[0].institutions[0].ror | https://ror.org/05r9r2f34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9579091 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Mandi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anshul Thakur |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Indian Institute of Technology,Mandi |
| authorships[1].author.id | https://openalex.org/A5101783272 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7870-7098 |
| authorships[1].author.display_name | Pulkit Sharma |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149 |
| authorships[1].affiliations[0].raw_affiliation_string | Computational Health Informatics Lab, University of Oxford, UK |
| authorships[1].institutions[0].id | https://openalex.org/I40120149 |
| authorships[1].institutions[0].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Oxford |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pulkit Sharma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computational Health Informatics Lab, University of Oxford, UK |
| authorships[2].author.id | https://openalex.org/A5075520691 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8149-8151 |
| authorships[2].author.display_name | Vinayak Abrol |
| authorships[2].countries | CH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I7495430 |
| authorships[2].affiliations[0].raw_affiliation_string | Idiap Research Institute, , Martigny, Switzerland |
| authorships[2].institutions[0].id | https://openalex.org/I7495430 |
| authorships[2].institutions[0].ror | https://ror.org/05932h694 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I7495430 |
| authorships[2].institutions[0].country_code | CH |
| authorships[2].institutions[0].display_name | Idiap Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vinayak Abrol |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Idiap Research Institute, , Martigny, Switzerland |
| authorships[3].author.id | https://openalex.org/A5078300199 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9178-3885 |
| authorships[3].author.display_name | P.K. Rajan |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9579091 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computing & Electrical Engg, IIT Mandi, India |
| authorships[3].institutions[0].id | https://openalex.org/I9579091 |
| authorships[3].institutions[0].ror | https://ror.org/05r9r2f34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9579091 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Institute of Technology Mandi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Padmanabhan Rajan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computing & Electrical Engg, IIT Mandi, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1902.02498 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Conv-codes: Audio Hashing For Bird Species Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11665 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1309 |
| primary_topic.subfield.display_name | Developmental Biology |
| primary_topic.display_name | Animal Vocal Communication and Behavior |
| related_works | https://openalex.org/W2911679849, https://openalex.org/W2783286101, https://openalex.org/W2965711782, https://openalex.org/W2058116810, https://openalex.org/W2999947904, https://openalex.org/W2909781645, https://openalex.org/W3013265869, https://openalex.org/W3099385964, https://openalex.org/W1972853352, https://openalex.org/W2018934490, https://openalex.org/W3192393047, https://openalex.org/W2476624367, https://openalex.org/W189447628, https://openalex.org/W2407501685, https://openalex.org/W2592611783, https://openalex.org/W2054549325, https://openalex.org/W3102844761, https://openalex.org/W2009959487, https://openalex.org/W2993699242, https://openalex.org/W2000284985 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1902.02498 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1902.02498 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1902.02498 |
| primary_location.id | pmh:oai:arXiv.org:1902.02498 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1902.02498 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1902.02498 |
| publication_date | 2019-02-07 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2117863804, https://openalex.org/W2767010978, https://openalex.org/W2773491457, https://openalex.org/W1993284846, https://openalex.org/W2585877841, https://openalex.org/W2012795698, https://openalex.org/W2150521923, https://openalex.org/W2111339618, https://openalex.org/W1565377632, https://openalex.org/W2891247746, https://openalex.org/W2149241068, https://openalex.org/W2127135195, https://openalex.org/W2613376785, https://openalex.org/W2076694837, https://openalex.org/W2963881378, https://openalex.org/W2106706131, https://openalex.org/W2132069633, https://openalex.org/W2156822626, https://openalex.org/W2069943693 |
| referenced_works_count | 19 |
| abstract_inverted_index.A | 75 |
| abstract_inverted_index.a | 5, 23, 32, 110, 126, 154 |
| abstract_inverted_index.50 | 185 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.as | 53, 71, 84 |
| abstract_inverted_index.in | 129 |
| abstract_inverted_index.is | 78, 101 |
| abstract_inverted_index.no | 135 |
| abstract_inverted_index.of | 31, 156, 168, 184 |
| abstract_inverted_index.on | 146, 180 |
| abstract_inverted_index.or | 138 |
| abstract_inverted_index.to | 27, 47, 91, 103, 109 |
| abstract_inverted_index.we | 3, 151 |
| abstract_inverted_index.The | 17, 55, 166 |
| abstract_inverted_index.and | 133, 148, 163 |
| abstract_inverted_index.are | 38, 62, 89, 172 |
| abstract_inverted_index.for | 13 |
| abstract_inverted_index.the | 59, 72, 81, 92, 98, 105, 118, 122, 130, 157, 181 |
| abstract_inverted_index.also | 152 |
| abstract_inverted_index.bird | 14, 33, 127, 176, 187 |
| abstract_inverted_index.both | 169 |
| abstract_inverted_index.find | 104 |
| abstract_inverted_index.from | 58, 143 |
| abstract_inverted_index.hash | 45, 76, 87, 99 |
| abstract_inverted_index.keys | 85 |
| abstract_inverted_index.test | 119 |
| abstract_inverted_index.that | 113, 160 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.with | 43, 68, 117, 174 |
| abstract_inverted_index.Apart | 142 |
| abstract_inverted_index.Bloom | 41 |
| abstract_inverted_index.These | 35 |
| abstract_inverted_index.audio | 10, 182 |
| abstract_inverted_index.based | 9, 145 |
| abstract_inverted_index.error | 140 |
| abstract_inverted_index.space | 132 |
| abstract_inverted_index.table | 77, 100 |
| abstract_inverted_index.that, | 144 |
| abstract_inverted_index.these | 170 |
| abstract_inverted_index.using | 40, 64, 80 |
| abstract_inverted_index.while | 86 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.During | 96 |
| abstract_inverted_index.Hence, | 121 |
| abstract_inverted_index.binary | 50 |
| abstract_inverted_index.center | 112 |
| abstract_inverted_index.codes, | 51 |
| abstract_inverted_index.convex | 7, 36 |
| abstract_inverted_index.direct | 149 |
| abstract_inverted_index.faster | 162 |
| abstract_inverted_index.hashed | 39 |
| abstract_inverted_index.matrix | 24 |
| abstract_inverted_index.obtain | 28, 48 |
| abstract_inverted_index.Jaccard | 69 |
| abstract_inverted_index.centers | 83 |
| abstract_inverted_index.cluster | 82, 111 |
| abstract_inverted_index.compact | 49 |
| abstract_inverted_index.filters | 42 |
| abstract_inverted_index.hashing | 11 |
| abstract_inverted_index.maximum | 115 |
| abstract_inverted_index.metric. | 74 |
| abstract_inverted_index.propose | 4, 153 |
| abstract_inverted_index.species | 15, 93, 106, 177 |
| abstract_inverted_index.variant | 155 |
| abstract_inverted_index.compared | 173 |
| abstract_inverted_index.examples | 61 |
| abstract_inverted_index.exhibits | 114 |
| abstract_inverted_index.existing | 175 |
| abstract_inverted_index.explicit | 136 |
| abstract_inverted_index.min-hash | 147 |
| abstract_inverted_index.pointers | 90 |
| abstract_inverted_index.proposed | 18, 123, 158 |
| abstract_inverted_index.provides | 161 |
| abstract_inverted_index.requires | 134 |
| abstract_inverted_index.searched | 102 |
| abstract_inverted_index.species. | 188 |
| abstract_inverted_index.testing, | 97 |
| abstract_inverted_index.training | 60 |
| abstract_inverted_index.utilizes | 20 |
| abstract_inverted_index.analysis, | 22 |
| abstract_inverted_index.clustered | 63 |
| abstract_inverted_index.conv-code | 131 |
| abstract_inverted_index.different | 186 |
| abstract_inverted_index.effective | 164 |
| abstract_inverted_index.extracted | 57 |
| abstract_inverted_index.framework | 12, 19, 124, 159 |
| abstract_inverted_index.functions | 46 |
| abstract_inverted_index.k-medoids | 66 |
| abstract_inverted_index.populated | 79 |
| abstract_inverted_index.archetypal | 21 |
| abstract_inverted_index.classifier | 137 |
| abstract_inverted_index.classifies | 125 |
| abstract_inverted_index.clustering | 67 |
| abstract_inverted_index.conv-code. | 120 |
| abstract_inverted_index.conv-codes | 56 |
| abstract_inverted_index.designated | 52 |
| abstract_inverted_index.frameworks | 171, 179 |
| abstract_inverted_index.recordings | 183 |
| abstract_inverted_index.similarity | 73, 116 |
| abstract_inverted_index.technique, | 26 |
| abstract_inverted_index.addressing, | 150 |
| abstract_inverted_index.coefficient | 70 |
| abstract_inverted_index.conv-codes. | 54 |
| abstract_inverted_index.information | 107 |
| abstract_inverted_index.supervised, | 6 |
| abstract_inverted_index.information. | 95 |
| abstract_inverted_index.performances | 167 |
| abstract_inverted_index.values/slots | 88 |
| abstract_inverted_index.vocalization | 128 |
| abstract_inverted_index.calculations. | 141 |
| abstract_inverted_index.convex-sparse | 29 |
| abstract_inverted_index.corresponding | 108 |
| abstract_inverted_index.factorization | 25 |
| abstract_inverted_index.vocalization. | 34 |
| abstract_inverted_index.class-specific | 65 |
| abstract_inverted_index.classification | 178 |
| abstract_inverted_index.identification | 94 |
| abstract_inverted_index.reconstruction | 139 |
| abstract_inverted_index.representation | 8 |
| abstract_inverted_index.classification. | 16, 165 |
| abstract_inverted_index.representations | 30, 37 |
| abstract_inverted_index.non-cryptographic | 44 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile |