Convergence Rates of Stochastic Gradient Descent under Infinite Noise Variance Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2102.10346
Recent studies have provided both empirical and theoretical evidence illustrating that heavy tails can emerge in stochastic gradient descent (SGD) in various scenarios. Such heavy tails potentially result in iterates with diverging variance, which hinders the use of conventional convergence analysis techniques that rely on the existence of the second-order moments. In this paper, we provide convergence guarantees for SGD under a state-dependent and heavy-tailed noise with a potentially infinite variance, for a class of strongly convex objectives. In the case where the $p$-th moment of the noise exists for some $p\in [1,2)$, we first identify a condition on the Hessian, coined '$p$-positive (semi-)definiteness', that leads to an interesting interpolation between positive semi-definite matrices ($p=2$) and diagonally dominant matrices with non-negative diagonal entries ($p=1$). Under this condition, we then provide a convergence rate for the distance to the global optimum in $L^p$. Furthermore, we provide a generalized central limit theorem, which shows that the properly scaled Polyak-Ruppert averaging converges weakly to a multivariate $α$-stable random vector. Our results indicate that even under heavy-tailed noise with infinite variance, SGD can converge to the global optimum without necessitating any modification neither to the loss function or to the algorithm itself, as typically required in robust statistics. We demonstrate the implications of our results to applications such as linear regression and generalized linear models subject to heavy-tailed data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2102.10346
- https://arxiv.org/pdf/2102.10346
- OA Status
- green
- Cited By
- 10
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3132170983
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3132170983Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2102.10346Digital Object Identifier
- Title
-
Convergence Rates of Stochastic Gradient Descent under Infinite Noise VarianceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-02-20Full publication date if available
- Authors
-
Hongjian Wang, Mert Gürbüzbalaban, Lingjiong Zhu, Umut Şimşekli, Murat A. ErdogduList of authors in order
- Landing page
-
https://arxiv.org/abs/2102.10346Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2102.10346Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2102.10346Direct OA link when available
- Concepts
-
Hessian matrix, Mathematics, Applied mathematics, Stochastic gradient descent, Rate of convergence, Diagonal, Iterated function, Convergence (economics), Convex function, Noise (video), Regular polygon, Mathematical analysis, Computer science, Computer network, Image (mathematics), Economic growth, Machine learning, Artificial neural network, Channel (broadcasting), Geometry, Economics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 2, 2022: 2, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3132170983 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2102.10346 |
| ids.doi | https://doi.org/10.48550/arxiv.2102.10346 |
| ids.mag | 3132170983 |
| ids.openalex | https://openalex.org/W3132170983 |
| fwci | 0.0 |
| type | preprint |
| title | Convergence Rates of Stochastic Gradient Descent under Infinite Noise Variance |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11612 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Stochastic Gradient Optimization Techniques |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T11716 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9991000294685364 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Random Matrices and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C203616005 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7731108665466309 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q620495 |
| concepts[0].display_name | Hessian matrix |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7312393188476562 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C28826006 |
| concepts[2].level | 1 |
| concepts[2].score | 0.586716890335083 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[2].display_name | Applied mathematics |
| concepts[3].id | https://openalex.org/C206688291 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5842336416244507 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7617819 |
| concepts[3].display_name | Stochastic gradient descent |
| concepts[4].id | https://openalex.org/C57869625 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5307809114456177 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1783502 |
| concepts[4].display_name | Rate of convergence |
| concepts[5].id | https://openalex.org/C130367717 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5221729278564453 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q189791 |
| concepts[5].display_name | Diagonal |
| concepts[6].id | https://openalex.org/C140479938 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4988362789154053 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5254619 |
| concepts[6].display_name | Iterated function |
| concepts[7].id | https://openalex.org/C2777303404 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47285890579223633 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[7].display_name | Convergence (economics) |
| concepts[8].id | https://openalex.org/C145446738 |
| concepts[8].level | 3 |
| concepts[8].score | 0.45642799139022827 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q319913 |
| concepts[8].display_name | Convex function |
| concepts[9].id | https://openalex.org/C99498987 |
| concepts[9].level | 3 |
| concepts[9].score | 0.45600709319114685 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[9].display_name | Noise (video) |
| concepts[10].id | https://openalex.org/C112680207 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2691623568534851 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q714886 |
| concepts[10].display_name | Regular polygon |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.22130617499351501 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.17329555749893188 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C31258907 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[13].display_name | Computer network |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C50522688 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[15].display_name | Economic growth |
| concepts[16].id | https://openalex.org/C119857082 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[16].display_name | Machine learning |
| concepts[17].id | https://openalex.org/C50644808 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[17].display_name | Artificial neural network |
| concepts[18].id | https://openalex.org/C127162648 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[18].display_name | Channel (broadcasting) |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| concepts[20].id | https://openalex.org/C162324750 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[20].display_name | Economics |
| concepts[21].id | https://openalex.org/C154945302 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[21].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/hessian-matrix |
| keywords[0].score | 0.7731108665466309 |
| keywords[0].display_name | Hessian matrix |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.7312393188476562 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/applied-mathematics |
| keywords[2].score | 0.586716890335083 |
| keywords[2].display_name | Applied mathematics |
| keywords[3].id | https://openalex.org/keywords/stochastic-gradient-descent |
| keywords[3].score | 0.5842336416244507 |
| keywords[3].display_name | Stochastic gradient descent |
| keywords[4].id | https://openalex.org/keywords/rate-of-convergence |
| keywords[4].score | 0.5307809114456177 |
| keywords[4].display_name | Rate of convergence |
| keywords[5].id | https://openalex.org/keywords/diagonal |
| keywords[5].score | 0.5221729278564453 |
| keywords[5].display_name | Diagonal |
| keywords[6].id | https://openalex.org/keywords/iterated-function |
| keywords[6].score | 0.4988362789154053 |
| keywords[6].display_name | Iterated function |
| keywords[7].id | https://openalex.org/keywords/convergence |
| keywords[7].score | 0.47285890579223633 |
| keywords[7].display_name | Convergence (economics) |
| keywords[8].id | https://openalex.org/keywords/convex-function |
| keywords[8].score | 0.45642799139022827 |
| keywords[8].display_name | Convex function |
| keywords[9].id | https://openalex.org/keywords/noise |
| keywords[9].score | 0.45600709319114685 |
| keywords[9].display_name | Noise (video) |
| keywords[10].id | https://openalex.org/keywords/regular-polygon |
| keywords[10].score | 0.2691623568534851 |
| keywords[10].display_name | Regular polygon |
| keywords[11].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[11].score | 0.22130617499351501 |
| keywords[11].display_name | Mathematical analysis |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.17329555749893188 |
| keywords[12].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2102.10346 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2102.10346 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2102.10346 |
| locations[1].id | doi:10.48550/arxiv.2102.10346 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2102.10346 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114626765 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8369-5925 |
| authorships[0].author.display_name | Hongjian Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[0].raw_affiliation_string | Tsinghua University [Beijing] |
| authorships[0].institutions[0].id | https://openalex.org/I99065089 |
| authorships[0].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hongjian Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tsinghua University [Beijing] |
| authorships[1].author.id | https://openalex.org/A5034370705 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0575-2450 |
| authorships[1].author.display_name | Mert Gürbüzbalaban |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210096112 |
| authorships[1].affiliations[0].raw_affiliation_string | Rutgers Business School |
| authorships[1].institutions[0].id | https://openalex.org/I4210096112 |
| authorships[1].institutions[0].ror | https://ror.org/00rcvgx40 |
| authorships[1].institutions[0].type | other |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210096112 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Rutgers Sexual and Reproductive Health and Rights |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mert Gürbüzbalaban |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Rutgers Business School |
| authorships[2].author.id | https://openalex.org/A5103238499 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7595-160X |
| authorships[2].author.display_name | Lingjiong Zhu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I103163165 |
| authorships[2].affiliations[0].raw_affiliation_string | Florida State University [Tallahassee] |
| authorships[2].institutions[0].id | https://openalex.org/I103163165 |
| authorships[2].institutions[0].ror | https://ror.org/05g3dte14 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I103163165 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Florida State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lingjiong Zhu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Florida State University [Tallahassee] |
| authorships[3].author.id | https://openalex.org/A5053326908 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Umut Şimşekli |
| authorships[3].affiliations[0].raw_affiliation_string | Statistical Machine Learning and Parsimony |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Umut Şimşekli |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Statistical Machine Learning and Parsimony |
| authorships[4].author.id | https://openalex.org/A5022491830 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4271-8921 |
| authorships[4].author.display_name | Murat A. Erdogdu |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Toronto |
| authorships[4].institutions[0].id | https://openalex.org/I185261750 |
| authorships[4].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | University of Toronto |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Murat A. Erdogdu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Toronto |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2102.10346 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Convergence Rates of Stochastic Gradient Descent under Infinite Noise Variance |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11612 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Stochastic Gradient Optimization Techniques |
| related_works | https://openalex.org/W4221162014, https://openalex.org/W3177326532, https://openalex.org/W2473609169, https://openalex.org/W3143650729, https://openalex.org/W2169345436, https://openalex.org/W2053964895, https://openalex.org/W2952728270, https://openalex.org/W2042173174, https://openalex.org/W2329573185, https://openalex.org/W4309210394 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2102.10346 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2102.10346 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2102.10346 |
| primary_location.id | pmh:oai:arXiv.org:2102.10346 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2102.10346 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2102.10346 |
| publication_date | 2021-02-20 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2047663898, https://openalex.org/W2041503582, https://openalex.org/W1855865311, https://openalex.org/W2912349752, https://openalex.org/W3034214771, https://openalex.org/W2066623346, https://openalex.org/W3007705674, https://openalex.org/W2751862591, https://openalex.org/W2899078636, https://openalex.org/W2885329750, https://openalex.org/W2788611447, https://openalex.org/W2966312692, https://openalex.org/W2938225732, https://openalex.org/W1994616650, https://openalex.org/W3035239340, https://openalex.org/W2102591947, https://openalex.org/W3109824424, https://openalex.org/W2963962909, https://openalex.org/W2490074880, https://openalex.org/W3131455732, https://openalex.org/W3026800838, https://openalex.org/W2755172545, https://openalex.org/W2801490189, https://openalex.org/W2019544144, https://openalex.org/W2082880083, https://openalex.org/W1528905581, https://openalex.org/W1557758852, https://openalex.org/W2964076119, https://openalex.org/W2551586060, https://openalex.org/W1975049860, https://openalex.org/W2022894179, https://openalex.org/W2031936349, https://openalex.org/W3170871273, https://openalex.org/W1972711404, https://openalex.org/W59018853, https://openalex.org/W2980686465, https://openalex.org/W2786323440, https://openalex.org/W2972939971, https://openalex.org/W2963585487, https://openalex.org/W2086161653 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 61, 67, 72, 96, 130, 145, 161 |
| abstract_inverted_index.In | 51, 78 |
| abstract_inverted_index.We | 204 |
| abstract_inverted_index.an | 107 |
| abstract_inverted_index.as | 198, 214 |
| abstract_inverted_index.in | 15, 20, 28, 140, 201 |
| abstract_inverted_index.of | 37, 47, 74, 85, 208 |
| abstract_inverted_index.on | 44, 98 |
| abstract_inverted_index.or | 193 |
| abstract_inverted_index.to | 106, 136, 160, 180, 189, 194, 211, 222 |
| abstract_inverted_index.we | 54, 93, 127, 143 |
| abstract_inverted_index.Our | 166 |
| abstract_inverted_index.SGD | 59, 177 |
| abstract_inverted_index.and | 6, 63, 115, 217 |
| abstract_inverted_index.any | 186 |
| abstract_inverted_index.can | 13, 178 |
| abstract_inverted_index.for | 58, 71, 89, 133 |
| abstract_inverted_index.our | 209 |
| abstract_inverted_index.the | 35, 45, 48, 79, 82, 86, 99, 134, 137, 153, 181, 190, 195, 206 |
| abstract_inverted_index.use | 36 |
| abstract_inverted_index.Such | 23 |
| abstract_inverted_index.both | 4 |
| abstract_inverted_index.case | 80 |
| abstract_inverted_index.even | 170 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.loss | 191 |
| abstract_inverted_index.rate | 132 |
| abstract_inverted_index.rely | 43 |
| abstract_inverted_index.some | 90 |
| abstract_inverted_index.such | 213 |
| abstract_inverted_index.that | 10, 42, 104, 152, 169 |
| abstract_inverted_index.then | 128 |
| abstract_inverted_index.this | 52, 125 |
| abstract_inverted_index.with | 30, 66, 119, 174 |
| abstract_inverted_index.$p\in | 91 |
| abstract_inverted_index.(SGD) | 19 |
| abstract_inverted_index.Under | 124 |
| abstract_inverted_index.class | 73 |
| abstract_inverted_index.data. | 224 |
| abstract_inverted_index.first | 94 |
| abstract_inverted_index.heavy | 11, 24 |
| abstract_inverted_index.leads | 105 |
| abstract_inverted_index.limit | 148 |
| abstract_inverted_index.noise | 65, 87, 173 |
| abstract_inverted_index.shows | 151 |
| abstract_inverted_index.tails | 12, 25 |
| abstract_inverted_index.under | 60, 171 |
| abstract_inverted_index.where | 81 |
| abstract_inverted_index.which | 33, 150 |
| abstract_inverted_index.$L^p$. | 141 |
| abstract_inverted_index.$p$-th | 83 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.coined | 101 |
| abstract_inverted_index.convex | 76 |
| abstract_inverted_index.emerge | 14 |
| abstract_inverted_index.exists | 88 |
| abstract_inverted_index.global | 138, 182 |
| abstract_inverted_index.linear | 215, 219 |
| abstract_inverted_index.models | 220 |
| abstract_inverted_index.moment | 84 |
| abstract_inverted_index.paper, | 53 |
| abstract_inverted_index.random | 164 |
| abstract_inverted_index.result | 27 |
| abstract_inverted_index.robust | 202 |
| abstract_inverted_index.scaled | 155 |
| abstract_inverted_index.weakly | 159 |
| abstract_inverted_index.($p=2$) | 114 |
| abstract_inverted_index.[1,2)$, | 92 |
| abstract_inverted_index.between | 110 |
| abstract_inverted_index.central | 147 |
| abstract_inverted_index.descent | 18 |
| abstract_inverted_index.entries | 122 |
| abstract_inverted_index.hinders | 34 |
| abstract_inverted_index.itself, | 197 |
| abstract_inverted_index.neither | 188 |
| abstract_inverted_index.optimum | 139, 183 |
| abstract_inverted_index.provide | 55, 129, 144 |
| abstract_inverted_index.results | 167, 210 |
| abstract_inverted_index.studies | 1 |
| abstract_inverted_index.subject | 221 |
| abstract_inverted_index.various | 21 |
| abstract_inverted_index.vector. | 165 |
| abstract_inverted_index.without | 184 |
| abstract_inverted_index.($p=1$). | 123 |
| abstract_inverted_index.Hessian, | 100 |
| abstract_inverted_index.analysis | 40 |
| abstract_inverted_index.converge | 179 |
| abstract_inverted_index.diagonal | 121 |
| abstract_inverted_index.distance | 135 |
| abstract_inverted_index.dominant | 117 |
| abstract_inverted_index.evidence | 8 |
| abstract_inverted_index.function | 192 |
| abstract_inverted_index.gradient | 17 |
| abstract_inverted_index.identify | 95 |
| abstract_inverted_index.indicate | 168 |
| abstract_inverted_index.infinite | 69, 175 |
| abstract_inverted_index.iterates | 29 |
| abstract_inverted_index.matrices | 113, 118 |
| abstract_inverted_index.moments. | 50 |
| abstract_inverted_index.positive | 111 |
| abstract_inverted_index.properly | 154 |
| abstract_inverted_index.provided | 3 |
| abstract_inverted_index.required | 200 |
| abstract_inverted_index.strongly | 75 |
| abstract_inverted_index.theorem, | 149 |
| abstract_inverted_index.algorithm | 196 |
| abstract_inverted_index.averaging | 157 |
| abstract_inverted_index.condition | 97 |
| abstract_inverted_index.converges | 158 |
| abstract_inverted_index.diverging | 31 |
| abstract_inverted_index.empirical | 5 |
| abstract_inverted_index.existence | 46 |
| abstract_inverted_index.typically | 199 |
| abstract_inverted_index.variance, | 32, 70, 176 |
| abstract_inverted_index.condition, | 126 |
| abstract_inverted_index.diagonally | 116 |
| abstract_inverted_index.guarantees | 57 |
| abstract_inverted_index.regression | 216 |
| abstract_inverted_index.scenarios. | 22 |
| abstract_inverted_index.stochastic | 16 |
| abstract_inverted_index.techniques | 41 |
| abstract_inverted_index.$α$-stable | 163 |
| abstract_inverted_index.convergence | 39, 56, 131 |
| abstract_inverted_index.demonstrate | 205 |
| abstract_inverted_index.generalized | 146, 218 |
| abstract_inverted_index.interesting | 108 |
| abstract_inverted_index.objectives. | 77 |
| abstract_inverted_index.potentially | 26, 68 |
| abstract_inverted_index.statistics. | 203 |
| abstract_inverted_index.theoretical | 7 |
| abstract_inverted_index.Furthermore, | 142 |
| abstract_inverted_index.applications | 212 |
| abstract_inverted_index.conventional | 38 |
| abstract_inverted_index.heavy-tailed | 64, 172, 223 |
| abstract_inverted_index.illustrating | 9 |
| abstract_inverted_index.implications | 207 |
| abstract_inverted_index.modification | 187 |
| abstract_inverted_index.multivariate | 162 |
| abstract_inverted_index.non-negative | 120 |
| abstract_inverted_index.second-order | 49 |
| abstract_inverted_index.'$p$-positive | 102 |
| abstract_inverted_index.interpolation | 109 |
| abstract_inverted_index.necessitating | 185 |
| abstract_inverted_index.semi-definite | 112 |
| abstract_inverted_index.Polyak-Ruppert | 156 |
| abstract_inverted_index.state-dependent | 62 |
| abstract_inverted_index.(semi-)definiteness', | 103 |
| cited_by_percentile_year | |
| countries_distinct_count | 4 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |