ConvNets vs. Transformers: Whose Visual Representations are More Transferable? Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2108.05305
Vision transformers have attracted much attention from computer vision researchers as they are not restricted to the spatial inductive bias of ConvNets. However, although Transformer-based backbones have achieved much progress on ImageNet classification, it is still unclear whether the learned representations are as transferable as or even more transferable than ConvNets' features. To address this point, we systematically investigate the transfer learning ability of ConvNets and vision transformers in 15 single-task and multi-task performance evaluations. Given the strong correlation between the performance of pre-trained models and transfer learning, we include 2 residual ConvNets (i.e., R-101x3 and R-152x4) and 3 Transformer-based visual backbones (i.e., ViT-B, ViT-L and Swin-B), which have close error rates on ImageNet, that indicate similar transfer learning performance on downstream datasets. We observe consistent advantages of Transformer-based backbones on 13 downstream tasks (out of 15), including but not limited to fine-grained classification, scene recognition (classification, segmentation and depth estimation), open-domain classification, face recognition, etc. More specifically, we find that two ViT models heavily rely on whole network fine-tuning to achieve performance gains while Swin Transformer does not have such a requirement. Moreover, vision transformers behave more robustly in multi-task learning, i.e., bringing more improvements when managing mutually beneficial tasks and reducing performance losses when tackling irrelevant tasks. We hope our discoveries can facilitate the exploration and exploitation of vision transformers in the future.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2108.05305
- https://arxiv.org/pdf/2108.05305
- OA Status
- green
- Cited By
- 4
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3190732212
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3190732212Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2108.05305Digital Object Identifier
- Title
-
ConvNets vs. Transformers: Whose Visual Representations are More Transferable?Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-11Full publication date if available
- Authors
-
Hong-Yu Zhou, Chixiang Lu, Sibei Yang, Yizhou YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2108.05305Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2108.05305Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2108.05305Direct OA link when available
- Concepts
-
Transformer, Computer science, Artificial intelligence, Segmentation, Machine learning, Transferability, Transfer of learning, Multi-task learning, Task (project management), Voltage, Engineering, Logit, Systems engineering, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3190732212 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2108.05305 |
| ids.doi | https://doi.org/10.48550/arxiv.2108.05305 |
| ids.mag | 3190732212 |
| ids.openalex | https://openalex.org/W3190732212 |
| fwci | |
| type | preprint |
| title | ConvNets vs. Transformers: Whose Visual Representations are More Transferable? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9988999962806702 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66322947 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7926145792007446 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[0].display_name | Transformer |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7011540532112122 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6000134944915771 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5441185235977173 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5413628816604614 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C61272859 |
| concepts[5].level | 3 |
| concepts[5].score | 0.50887131690979 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7834031 |
| concepts[5].display_name | Transferability |
| concepts[6].id | https://openalex.org/C150899416 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4812847971916199 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[6].display_name | Transfer of learning |
| concepts[7].id | https://openalex.org/C28006648 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4391614496707916 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6934509 |
| concepts[7].display_name | Multi-task learning |
| concepts[8].id | https://openalex.org/C2780451532 |
| concepts[8].level | 2 |
| concepts[8].score | 0.2806745171546936 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[8].display_name | Task (project management) |
| concepts[9].id | https://openalex.org/C165801399 |
| concepts[9].level | 2 |
| concepts[9].score | 0.16992971301078796 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[9].display_name | Voltage |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.14804542064666748 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C140331021 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1868104 |
| concepts[11].display_name | Logit |
| concepts[12].id | https://openalex.org/C201995342 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[12].display_name | Systems engineering |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/transformer |
| keywords[0].score | 0.7926145792007446 |
| keywords[0].display_name | Transformer |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7011540532112122 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6000134944915771 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.5441185235977173 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5413628816604614 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/transferability |
| keywords[5].score | 0.50887131690979 |
| keywords[5].display_name | Transferability |
| keywords[6].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[6].score | 0.4812847971916199 |
| keywords[6].display_name | Transfer of learning |
| keywords[7].id | https://openalex.org/keywords/multi-task-learning |
| keywords[7].score | 0.4391614496707916 |
| keywords[7].display_name | Multi-task learning |
| keywords[8].id | https://openalex.org/keywords/task |
| keywords[8].score | 0.2806745171546936 |
| keywords[8].display_name | Task (project management) |
| keywords[9].id | https://openalex.org/keywords/voltage |
| keywords[9].score | 0.16992971301078796 |
| keywords[9].display_name | Voltage |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.14804542064666748 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2108.05305 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2108.05305 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2108.05305 |
| locations[1].id | doi:10.48550/arxiv.2108.05305 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2108.05305 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100783219 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1256-7050 |
| authorships[0].author.display_name | Hong-Yu Zhou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hong-Yu Zhou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086804572 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0665-2627 |
| authorships[1].author.display_name | Chixiang Lu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chixiang Lu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5012166205 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8144-7351 |
| authorships[2].author.display_name | Sibei Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sibei Yang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5108557359 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yizhou Yu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yizhou Yu |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2108.05305 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-08-16T00:00:00 |
| display_name | ConvNets vs. Transformers: Whose Visual Representations are More Transferable? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2821676139, https://openalex.org/W3043695725, https://openalex.org/W4382138864, https://openalex.org/W4387770285, https://openalex.org/W3022215768, https://openalex.org/W3135975972, https://openalex.org/W3016888008, https://openalex.org/W4385864216, https://openalex.org/W4387183713, https://openalex.org/W2165698076 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2108.05305 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2108.05305 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2108.05305 |
| primary_location.id | pmh:oai:arXiv.org:2108.05305 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2108.05305 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2108.05305 |
| publication_date | 2021-08-11 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2884822772, https://openalex.org/W1797268635, https://openalex.org/W2108598243, https://openalex.org/W2798868324, https://openalex.org/W2062118960, https://openalex.org/W2963403868, https://openalex.org/W2152161678, https://openalex.org/W3094502228, https://openalex.org/W2510733224, https://openalex.org/W2970971581, https://openalex.org/W2963760790, https://openalex.org/W2194775991, https://openalex.org/W2549139847, https://openalex.org/W3097217077, https://openalex.org/W3139487216, https://openalex.org/W125693051, https://openalex.org/W2950541952, https://openalex.org/W2964308564, https://openalex.org/W3138516171, https://openalex.org/W1686810756, https://openalex.org/W2163605009, https://openalex.org/W2149933564, https://openalex.org/W2097117768, https://openalex.org/W2804935296, https://openalex.org/W2553303224, https://openalex.org/W2155904486, https://openalex.org/W3136635488 |
| referenced_works_count | 27 |
| abstract_inverted_index.2 | 90 |
| abstract_inverted_index.3 | 98 |
| abstract_inverted_index.a | 181 |
| abstract_inverted_index.13 | 131 |
| abstract_inverted_index.15 | 69 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.We | 123, 209 |
| abstract_inverted_index.as | 10, 42, 44 |
| abstract_inverted_index.in | 68, 189, 222 |
| abstract_inverted_index.is | 34 |
| abstract_inverted_index.it | 33 |
| abstract_inverted_index.of | 20, 63, 82, 127, 135, 219 |
| abstract_inverted_index.on | 30, 112, 120, 130, 166 |
| abstract_inverted_index.or | 45 |
| abstract_inverted_index.to | 15, 141, 170 |
| abstract_inverted_index.we | 56, 88, 158 |
| abstract_inverted_index.ViT | 162 |
| abstract_inverted_index.and | 65, 71, 85, 95, 97, 105, 148, 201, 217 |
| abstract_inverted_index.are | 12, 41 |
| abstract_inverted_index.but | 138 |
| abstract_inverted_index.can | 213 |
| abstract_inverted_index.not | 13, 139, 178 |
| abstract_inverted_index.our | 211 |
| abstract_inverted_index.the | 16, 38, 59, 76, 80, 215, 223 |
| abstract_inverted_index.two | 161 |
| abstract_inverted_index.(out | 134 |
| abstract_inverted_index.15), | 136 |
| abstract_inverted_index.More | 156 |
| abstract_inverted_index.Swin | 175 |
| abstract_inverted_index.bias | 19 |
| abstract_inverted_index.does | 177 |
| abstract_inverted_index.etc. | 155 |
| abstract_inverted_index.even | 46 |
| abstract_inverted_index.face | 153 |
| abstract_inverted_index.find | 159 |
| abstract_inverted_index.from | 6 |
| abstract_inverted_index.have | 2, 26, 108, 179 |
| abstract_inverted_index.hope | 210 |
| abstract_inverted_index.more | 47, 187, 194 |
| abstract_inverted_index.much | 4, 28 |
| abstract_inverted_index.rely | 165 |
| abstract_inverted_index.such | 180 |
| abstract_inverted_index.than | 49 |
| abstract_inverted_index.that | 114, 160 |
| abstract_inverted_index.they | 11 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.when | 196, 205 |
| abstract_inverted_index.Given | 75 |
| abstract_inverted_index.ViT-L | 104 |
| abstract_inverted_index.close | 109 |
| abstract_inverted_index.depth | 149 |
| abstract_inverted_index.error | 110 |
| abstract_inverted_index.gains | 173 |
| abstract_inverted_index.i.e., | 192 |
| abstract_inverted_index.rates | 111 |
| abstract_inverted_index.scene | 144 |
| abstract_inverted_index.still | 35 |
| abstract_inverted_index.tasks | 133, 200 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.while | 174 |
| abstract_inverted_index.whole | 167 |
| abstract_inverted_index.(i.e., | 93, 102 |
| abstract_inverted_index.ViT-B, | 103 |
| abstract_inverted_index.Vision | 0 |
| abstract_inverted_index.behave | 186 |
| abstract_inverted_index.losses | 204 |
| abstract_inverted_index.models | 84, 163 |
| abstract_inverted_index.point, | 55 |
| abstract_inverted_index.strong | 77 |
| abstract_inverted_index.tasks. | 208 |
| abstract_inverted_index.vision | 8, 66, 184, 220 |
| abstract_inverted_index.visual | 100 |
| abstract_inverted_index.R-101x3 | 94 |
| abstract_inverted_index.ability | 62 |
| abstract_inverted_index.achieve | 171 |
| abstract_inverted_index.address | 53 |
| abstract_inverted_index.between | 79 |
| abstract_inverted_index.future. | 224 |
| abstract_inverted_index.heavily | 164 |
| abstract_inverted_index.include | 89 |
| abstract_inverted_index.learned | 39 |
| abstract_inverted_index.limited | 140 |
| abstract_inverted_index.network | 168 |
| abstract_inverted_index.observe | 124 |
| abstract_inverted_index.similar | 116 |
| abstract_inverted_index.spatial | 17 |
| abstract_inverted_index.unclear | 36 |
| abstract_inverted_index.whether | 37 |
| abstract_inverted_index.ConvNets | 64, 92 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.ImageNet | 31 |
| abstract_inverted_index.R-152x4) | 96 |
| abstract_inverted_index.Swin-B), | 106 |
| abstract_inverted_index.achieved | 27 |
| abstract_inverted_index.although | 23 |
| abstract_inverted_index.bringing | 193 |
| abstract_inverted_index.computer | 7 |
| abstract_inverted_index.indicate | 115 |
| abstract_inverted_index.learning | 61, 118 |
| abstract_inverted_index.managing | 197 |
| abstract_inverted_index.mutually | 198 |
| abstract_inverted_index.progress | 29 |
| abstract_inverted_index.reducing | 202 |
| abstract_inverted_index.residual | 91 |
| abstract_inverted_index.robustly | 188 |
| abstract_inverted_index.tackling | 206 |
| abstract_inverted_index.transfer | 60, 86, 117 |
| abstract_inverted_index.ConvNets' | 50 |
| abstract_inverted_index.ConvNets. | 21 |
| abstract_inverted_index.ImageNet, | 113 |
| abstract_inverted_index.Moreover, | 183 |
| abstract_inverted_index.attention | 5 |
| abstract_inverted_index.attracted | 3 |
| abstract_inverted_index.backbones | 25, 101, 129 |
| abstract_inverted_index.datasets. | 122 |
| abstract_inverted_index.features. | 51 |
| abstract_inverted_index.including | 137 |
| abstract_inverted_index.inductive | 18 |
| abstract_inverted_index.learning, | 87, 191 |
| abstract_inverted_index.advantages | 126 |
| abstract_inverted_index.beneficial | 199 |
| abstract_inverted_index.consistent | 125 |
| abstract_inverted_index.downstream | 121, 132 |
| abstract_inverted_index.facilitate | 214 |
| abstract_inverted_index.irrelevant | 207 |
| abstract_inverted_index.multi-task | 72, 190 |
| abstract_inverted_index.restricted | 14 |
| abstract_inverted_index.Transformer | 176 |
| abstract_inverted_index.correlation | 78 |
| abstract_inverted_index.discoveries | 212 |
| abstract_inverted_index.exploration | 216 |
| abstract_inverted_index.fine-tuning | 169 |
| abstract_inverted_index.investigate | 58 |
| abstract_inverted_index.open-domain | 151 |
| abstract_inverted_index.performance | 73, 81, 119, 172, 203 |
| abstract_inverted_index.pre-trained | 83 |
| abstract_inverted_index.recognition | 145 |
| abstract_inverted_index.researchers | 9 |
| abstract_inverted_index.single-task | 70 |
| abstract_inverted_index.estimation), | 150 |
| abstract_inverted_index.evaluations. | 74 |
| abstract_inverted_index.exploitation | 218 |
| abstract_inverted_index.fine-grained | 142 |
| abstract_inverted_index.improvements | 195 |
| abstract_inverted_index.recognition, | 154 |
| abstract_inverted_index.requirement. | 182 |
| abstract_inverted_index.segmentation | 147 |
| abstract_inverted_index.transferable | 43, 48 |
| abstract_inverted_index.transformers | 1, 67, 185, 221 |
| abstract_inverted_index.specifically, | 157 |
| abstract_inverted_index.systematically | 57 |
| abstract_inverted_index.classification, | 32, 143, 152 |
| abstract_inverted_index.representations | 40 |
| abstract_inverted_index.(classification, | 146 |
| abstract_inverted_index.Transformer-based | 24, 99, 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |