Convolutional Neural Networks based Click-Through Rate Prediction with Multiple Feature Sequences Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2018/277
Convolutional Neural Network (CNN) achieved satisfying performance in click-through rate (CTR) prediction in recent studies. Since features used in CTR prediction have no meaningful sequence in nature, the features can be arranged in any order. As CNN learns the local information of a sample, the feature sequence may influence its performance significantly. However, this problem has not been fully investigated. This paper firstly investigates whether and how the feature sequence affects the performance of the CNN-based CTR prediction method. As the data distribution of CTR prediction changes with time, the best current sequence may not be suitable for future data. Two multi-sequence models are proposed to learn the information provided by different sequences. The first model learns all sequences using a single feature learning module, while each sequence is learnt individually by a feature learning module in the second one. Moreover, a method of generating a set of embedding sequences which aims to consider the combined influence of all feature pairs on feature learning is also introduced. The experiments are conducted to demonstrate the effectiveness and stability of our proposed models in the offline and online environment on both the benchmark Avazu dataset and a real commercial dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2018/277
- https://www.ijcai.org/proceedings/2018/0277.pdf
- OA Status
- gold
- Cited By
- 36
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2808489216
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2808489216Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2018/277Digital Object Identifier
- Title
-
Convolutional Neural Networks based Click-Through Rate Prediction with Multiple Feature SequencesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-07-01Full publication date if available
- Authors
-
Patrick P. K. Chan, Xian Hu, Lili Zhao, Daniel Yeung, Dapeng Liu, Lei XiaoList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2018/277Publisher landing page
- PDF URL
-
https://www.ijcai.org/proceedings/2018/0277.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.ijcai.org/proceedings/2018/0277.pdfDirect OA link when available
- Concepts
-
Computer science, Feature (linguistics), Convolutional neural network, Benchmark (surveying), Sequence (biology), Artificial intelligence, Sequence labeling, Embedding, Feature learning, Pattern recognition (psychology), Stability (learning theory), Set (abstract data type), Artificial neural network, Machine learning, Geography, Programming language, Linguistics, Genetics, Economics, Biology, Philosophy, Task (project management), Geodesy, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
36Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 3, 2022: 3, 2021: 8Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2808489216 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2018/277 |
| ids.doi | https://doi.org/10.24963/ijcai.2018/277 |
| ids.mag | 2808489216 |
| ids.openalex | https://openalex.org/W2808489216 |
| fwci | 37.27931648 |
| type | article |
| title | Convolutional Neural Networks based Click-Through Rate Prediction with Multiple Feature Sequences |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2013 |
| biblio.first_page | 2007 |
| topics[0].id | https://openalex.org/T13731 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3322 |
| topics[0].subfield.display_name | Urban Studies |
| topics[0].display_name | Advanced Computing and Algorithms |
| topics[1].id | https://openalex.org/T11165 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Video Quality Assessment |
| topics[2].id | https://openalex.org/T11605 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9555000066757202 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Visual Attention and Saliency Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7814295291900635 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776401178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7438780069351196 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[1].display_name | Feature (linguistics) |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7196861505508423 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6657839417457581 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C2778112365 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6445585489273071 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[4].display_name | Sequence (biology) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6440572142601013 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C35639132 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5714403390884399 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7452468 |
| concepts[6].display_name | Sequence labeling |
| concepts[7].id | https://openalex.org/C41608201 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5577766299247742 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[7].display_name | Embedding |
| concepts[8].id | https://openalex.org/C59404180 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48952019214630127 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[8].display_name | Feature learning |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4890309274196625 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C112972136 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47619569301605225 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[10].display_name | Stability (learning theory) |
| concepts[11].id | https://openalex.org/C177264268 |
| concepts[11].level | 2 |
| concepts[11].score | 0.46879658102989197 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[11].display_name | Set (abstract data type) |
| concepts[12].id | https://openalex.org/C50644808 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4286000430583954 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[12].display_name | Artificial neural network |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3980981409549713 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C54355233 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[17].display_name | Genetics |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C2780451532 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[21].display_name | Task (project management) |
| concepts[22].id | https://openalex.org/C13280743 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[22].display_name | Geodesy |
| concepts[23].id | https://openalex.org/C187736073 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[23].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7814295291900635 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/feature |
| keywords[1].score | 0.7438780069351196 |
| keywords[1].display_name | Feature (linguistics) |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.7196861505508423 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.6657839417457581 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/sequence |
| keywords[4].score | 0.6445585489273071 |
| keywords[4].display_name | Sequence (biology) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.6440572142601013 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/sequence-labeling |
| keywords[6].score | 0.5714403390884399 |
| keywords[6].display_name | Sequence labeling |
| keywords[7].id | https://openalex.org/keywords/embedding |
| keywords[7].score | 0.5577766299247742 |
| keywords[7].display_name | Embedding |
| keywords[8].id | https://openalex.org/keywords/feature-learning |
| keywords[8].score | 0.48952019214630127 |
| keywords[8].display_name | Feature learning |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4890309274196625 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/stability |
| keywords[10].score | 0.47619569301605225 |
| keywords[10].display_name | Stability (learning theory) |
| keywords[11].id | https://openalex.org/keywords/set |
| keywords[11].score | 0.46879658102989197 |
| keywords[11].display_name | Set (abstract data type) |
| keywords[12].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[12].score | 0.4286000430583954 |
| keywords[12].display_name | Artificial neural network |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.3980981409549713 |
| keywords[13].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2018/277 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.ijcai.org/proceedings/2018/0277.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2018/277 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5031854980 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7774-580X |
| authorships[0].author.display_name | Patrick P. K. Chan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, China |
| authorships[0].institutions[0].id | https://openalex.org/I90610280 |
| authorships[0].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | South China University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Patrick P. K. Chan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, China |
| authorships[1].author.id | https://openalex.org/A5065917069 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3381-7514 |
| authorships[1].author.display_name | Xian Hu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2250653659 |
| authorships[1].affiliations[0].raw_affiliation_string | Tencent, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I90610280 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, China |
| authorships[1].institutions[0].id | https://openalex.org/I90610280 |
| authorships[1].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | South China University of Technology |
| authorships[1].institutions[1].id | https://openalex.org/I2250653659 |
| authorships[1].institutions[1].ror | https://ror.org/00hhjss72 |
| authorships[1].institutions[1].type | company |
| authorships[1].institutions[1].lineage | https://openalex.org/I2250653659 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Tencent (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xian Hu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, China, Tencent, China |
| authorships[2].author.id | https://openalex.org/A5021558189 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5182-7230 |
| authorships[2].author.display_name | Lili Zhao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2250653659 |
| authorships[2].affiliations[0].raw_affiliation_string | Tencent, China |
| authorships[2].institutions[0].id | https://openalex.org/I2250653659 |
| authorships[2].institutions[0].ror | https://ror.org/00hhjss72 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2250653659 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tencent (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lili Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Tencent, China |
| authorships[3].author.id | https://openalex.org/A5006543313 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9397-8865 |
| authorships[3].author.display_name | Daniel Yeung |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, China |
| authorships[3].institutions[0].id | https://openalex.org/I90610280 |
| authorships[3].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | South China University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Daniel S. Yeung |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, China |
| authorships[4].author.id | https://openalex.org/A5100693875 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8822-656X |
| authorships[4].author.display_name | Dapeng Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2250653659 |
| authorships[4].affiliations[0].raw_affiliation_string | Tencent, China |
| authorships[4].institutions[0].id | https://openalex.org/I2250653659 |
| authorships[4].institutions[0].ror | https://ror.org/00hhjss72 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I2250653659 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tencent (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dapeng Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Tencent, China |
| authorships[5].author.id | https://openalex.org/A5100441099 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0307-6206 |
| authorships[5].author.display_name | Lei Xiao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2250653659 |
| authorships[5].affiliations[0].raw_affiliation_string | Tencent, China |
| authorships[5].institutions[0].id | https://openalex.org/I2250653659 |
| authorships[5].institutions[0].ror | https://ror.org/00hhjss72 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I2250653659 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Tencent (China) |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Lei Xiao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Tencent, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijcai.org/proceedings/2018/0277.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Convolutional Neural Networks based Click-Through Rate Prediction with Multiple Feature Sequences |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13731 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3322 |
| primary_topic.subfield.display_name | Urban Studies |
| primary_topic.display_name | Advanced Computing and Algorithms |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W4321353415, https://openalex.org/W2745001401, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W4246352526, https://openalex.org/W2121910908, https://openalex.org/W915438175, https://openalex.org/W2608311224 |
| cited_by_count | 36 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 8 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 9 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 8 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.24963/ijcai.2018/277 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ijcai.org/proceedings/2018/0277.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.24963/ijcai.2018/277 |
| primary_location.id | doi:10.24963/ijcai.2018/277 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.ijcai.org/proceedings/2018/0277.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2018/277 |
| publication_date | 2018-07-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2165880761, https://openalex.org/W6863994431, https://openalex.org/W2523437372, https://openalex.org/W2739619730, https://openalex.org/W2076618162, https://openalex.org/W2194775991, https://openalex.org/W2509235963, https://openalex.org/W1522301498, https://openalex.org/W6803771590, https://openalex.org/W2369906006, https://openalex.org/W1983548143, https://openalex.org/W6864014924, https://openalex.org/W1960685374, https://openalex.org/W2171461858, https://openalex.org/W2741630455, https://openalex.org/W6791858558, https://openalex.org/W2723293840, https://openalex.org/W2750075801, https://openalex.org/W2724479291, https://openalex.org/W2728346985, https://openalex.org/W2604662567, https://openalex.org/W2741271950, https://openalex.org/W2170240176, https://openalex.org/W2295739661 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 42, 120, 132, 141, 145, 194 |
| abstract_inverted_index.As | 35, 79 |
| abstract_inverted_index.be | 30, 95 |
| abstract_inverted_index.by | 110, 131 |
| abstract_inverted_index.in | 7, 12, 18, 25, 32, 136, 181 |
| abstract_inverted_index.is | 128, 164 |
| abstract_inverted_index.no | 22 |
| abstract_inverted_index.of | 41, 73, 83, 143, 147, 157, 177 |
| abstract_inverted_index.on | 161, 187 |
| abstract_inverted_index.to | 105, 152, 171 |
| abstract_inverted_index.CNN | 36 |
| abstract_inverted_index.CTR | 19, 76, 84 |
| abstract_inverted_index.The | 113, 167 |
| abstract_inverted_index.Two | 100 |
| abstract_inverted_index.all | 117, 158 |
| abstract_inverted_index.and | 65, 175, 184, 193 |
| abstract_inverted_index.any | 33 |
| abstract_inverted_index.are | 103, 169 |
| abstract_inverted_index.can | 29 |
| abstract_inverted_index.for | 97 |
| abstract_inverted_index.has | 55 |
| abstract_inverted_index.how | 66 |
| abstract_inverted_index.its | 49 |
| abstract_inverted_index.may | 47, 93 |
| abstract_inverted_index.not | 56, 94 |
| abstract_inverted_index.our | 178 |
| abstract_inverted_index.set | 146 |
| abstract_inverted_index.the | 27, 38, 44, 67, 71, 74, 80, 89, 107, 137, 154, 173, 182, 189 |
| abstract_inverted_index.This | 60 |
| abstract_inverted_index.aims | 151 |
| abstract_inverted_index.also | 165 |
| abstract_inverted_index.been | 57 |
| abstract_inverted_index.best | 90 |
| abstract_inverted_index.both | 188 |
| abstract_inverted_index.data | 81 |
| abstract_inverted_index.each | 126 |
| abstract_inverted_index.have | 21 |
| abstract_inverted_index.one. | 139 |
| abstract_inverted_index.rate | 9 |
| abstract_inverted_index.real | 195 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.used | 17 |
| abstract_inverted_index.with | 87 |
| abstract_inverted_index.(CNN) | 3 |
| abstract_inverted_index.(CTR) | 10 |
| abstract_inverted_index.Avazu | 191 |
| abstract_inverted_index.Since | 15 |
| abstract_inverted_index.data. | 99 |
| abstract_inverted_index.first | 114 |
| abstract_inverted_index.fully | 58 |
| abstract_inverted_index.learn | 106 |
| abstract_inverted_index.local | 39 |
| abstract_inverted_index.model | 115 |
| abstract_inverted_index.pairs | 160 |
| abstract_inverted_index.paper | 61 |
| abstract_inverted_index.time, | 88 |
| abstract_inverted_index.using | 119 |
| abstract_inverted_index.which | 150 |
| abstract_inverted_index.while | 125 |
| abstract_inverted_index.Neural | 1 |
| abstract_inverted_index.future | 98 |
| abstract_inverted_index.learns | 37, 116 |
| abstract_inverted_index.learnt | 129 |
| abstract_inverted_index.method | 142 |
| abstract_inverted_index.models | 102, 180 |
| abstract_inverted_index.module | 135 |
| abstract_inverted_index.online | 185 |
| abstract_inverted_index.order. | 34 |
| abstract_inverted_index.recent | 13 |
| abstract_inverted_index.second | 138 |
| abstract_inverted_index.single | 121 |
| abstract_inverted_index.Network | 2 |
| abstract_inverted_index.affects | 70 |
| abstract_inverted_index.changes | 86 |
| abstract_inverted_index.current | 91 |
| abstract_inverted_index.dataset | 192 |
| abstract_inverted_index.feature | 45, 68, 122, 133, 159, 162 |
| abstract_inverted_index.firstly | 62 |
| abstract_inverted_index.method. | 78 |
| abstract_inverted_index.module, | 124 |
| abstract_inverted_index.nature, | 26 |
| abstract_inverted_index.offline | 183 |
| abstract_inverted_index.problem | 54 |
| abstract_inverted_index.sample, | 43 |
| abstract_inverted_index.whether | 64 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.achieved | 4 |
| abstract_inverted_index.arranged | 31 |
| abstract_inverted_index.combined | 155 |
| abstract_inverted_index.consider | 153 |
| abstract_inverted_index.dataset. | 197 |
| abstract_inverted_index.features | 16, 28 |
| abstract_inverted_index.learning | 123, 134, 163 |
| abstract_inverted_index.proposed | 104, 179 |
| abstract_inverted_index.provided | 109 |
| abstract_inverted_index.sequence | 24, 46, 69, 92, 127 |
| abstract_inverted_index.studies. | 14 |
| abstract_inverted_index.suitable | 96 |
| abstract_inverted_index.CNN-based | 75 |
| abstract_inverted_index.Moreover, | 140 |
| abstract_inverted_index.benchmark | 190 |
| abstract_inverted_index.conducted | 170 |
| abstract_inverted_index.different | 111 |
| abstract_inverted_index.embedding | 148 |
| abstract_inverted_index.influence | 48, 156 |
| abstract_inverted_index.sequences | 118, 149 |
| abstract_inverted_index.stability | 176 |
| abstract_inverted_index.commercial | 196 |
| abstract_inverted_index.generating | 144 |
| abstract_inverted_index.meaningful | 23 |
| abstract_inverted_index.prediction | 11, 20, 77, 85 |
| abstract_inverted_index.satisfying | 5 |
| abstract_inverted_index.sequences. | 112 |
| abstract_inverted_index.demonstrate | 172 |
| abstract_inverted_index.environment | 186 |
| abstract_inverted_index.experiments | 168 |
| abstract_inverted_index.information | 40, 108 |
| abstract_inverted_index.introduced. | 166 |
| abstract_inverted_index.performance | 6, 50, 72 |
| abstract_inverted_index.distribution | 82 |
| abstract_inverted_index.individually | 130 |
| abstract_inverted_index.investigates | 63 |
| abstract_inverted_index.Convolutional | 0 |
| abstract_inverted_index.click-through | 8 |
| abstract_inverted_index.effectiveness | 174 |
| abstract_inverted_index.investigated. | 59 |
| abstract_inverted_index.multi-sequence | 101 |
| abstract_inverted_index.significantly. | 51 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.9967688 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |