CONVOLUTIONAL NEURAL NETWORKS FOR PROBLEMS IN TRANSPORT PHENOMENA: A THEORETICAL MINIMUM Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1615/jflowvisimageproc.2022043908
Convolutional neural network (CNN), a deep learning algorithm, has gained popularity in technological applications that rely on interpreting images (typically, an image is a 2D field of pixels). Transport phenomena is the science of studying different fields representing mass, momentum, or heat transfer. Some of the common fields are species concentration, fluid velocity, pressure, and temperature. Each of these fields can be expressed as an image(s). Consequently, CNNs can be leveraged to solve specific scientific problems in transport phenomena. Herein, we show that such problems can be grouped into three basic categories: (a) mapping a field to a descriptor (b) mapping a field to another field, and (c) mapping a descriptor to a field. After reviewing the representative transport phenomena literature for each of these categories, we illustrate the necessary steps for constructing appropriate CNN solutions using sessile liquid drops as an exemplar problem. If sufficient training data is available, CNNs can considerably speed up the solution of the corresponding problems. The present discussion is meant to be minimalistic such that readers can easily identify the transport phenomena problems where CNNs can be useful as well as construct and/or assess such solutions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1615/jflowvisimageproc.2022043908
- OA Status
- green
- Cited By
- 3
- References
- 105
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312677814
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312677814Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1615/jflowvisimageproc.2022043908Digital Object Identifier
- Title
-
CONVOLUTIONAL NEURAL NETWORKS FOR PROBLEMS IN TRANSPORT PHENOMENA: A THEORETICAL MINIMUMWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-17Full publication date if available
- Authors
-
Arjun Bhasin, Aashutosh MistryList of authors in order
- Landing page
-
https://doi.org/10.1615/jflowvisimageproc.2022043908Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1989939Direct OA link when available
- Concepts
-
Convolutional neural network, Field (mathematics), Computer science, Construct (python library), Artificial intelligence, Popularity, Pixel, Deep learning, Transfer of learning, Transport phenomena, Image (mathematics), Algorithm, Mathematics, Physics, Mechanics, Social psychology, Programming language, Pure mathematics, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
105Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312677814 |
|---|---|
| doi | https://doi.org/10.1615/jflowvisimageproc.2022043908 |
| ids.doi | https://doi.org/10.1615/jflowvisimageproc.2022043908 |
| ids.openalex | https://openalex.org/W4312677814 |
| fwci | 0.58487186 |
| type | article |
| title | CONVOLUTIONAL NEURAL NETWORKS FOR PROBLEMS IN TRANSPORT PHENOMENA: A THEORETICAL MINIMUM |
| biblio.issue | 3 |
| biblio.volume | 30 |
| biblio.last_page | 38 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9763000011444092 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9750000238418579 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9678999781608582 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7741456031799316 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C9652623 |
| concepts[1].level | 2 |
| concepts[1].score | 0.707280158996582 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[1].display_name | Field (mathematics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6497223377227783 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2780801425 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6061943173408508 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[3].display_name | Construct (python library) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5667668581008911 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2780586970 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5380297303199768 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1357284 |
| concepts[5].display_name | Popularity |
| concepts[6].id | https://openalex.org/C160633673 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48567092418670654 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[6].display_name | Pixel |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47226086258888245 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C150899416 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4570489227771759 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[8].display_name | Transfer of learning |
| concepts[9].id | https://openalex.org/C92718894 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44083502888679504 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q679643 |
| concepts[9].display_name | Transport phenomena |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4302322268486023 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33957478404045105 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.19171267747879028 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.14705759286880493 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C57879066 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08628985285758972 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[14].display_name | Mechanics |
| concepts[15].id | https://openalex.org/C77805123 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[15].display_name | Social psychology |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C202444582 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[17].display_name | Pure mathematics |
| concepts[18].id | https://openalex.org/C15744967 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[18].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7741456031799316 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/field |
| keywords[1].score | 0.707280158996582 |
| keywords[1].display_name | Field (mathematics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6497223377227783 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/construct |
| keywords[3].score | 0.6061943173408508 |
| keywords[3].display_name | Construct (python library) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5667668581008911 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/popularity |
| keywords[5].score | 0.5380297303199768 |
| keywords[5].display_name | Popularity |
| keywords[6].id | https://openalex.org/keywords/pixel |
| keywords[6].score | 0.48567092418670654 |
| keywords[6].display_name | Pixel |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.47226086258888245 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[8].score | 0.4570489227771759 |
| keywords[8].display_name | Transfer of learning |
| keywords[9].id | https://openalex.org/keywords/transport-phenomena |
| keywords[9].score | 0.44083502888679504 |
| keywords[9].display_name | Transport phenomena |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.4302322268486023 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.33957478404045105 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.19171267747879028 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.14705759286880493 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/mechanics |
| keywords[14].score | 0.08628985285758972 |
| keywords[14].display_name | Mechanics |
| language | en |
| locations[0].id | doi:10.1615/jflowvisimageproc.2022043908 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S137131389 |
| locations[0].source.issn | 1065-3090, 1940-4336 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1065-3090 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Flow Visualization and Image Processing |
| locations[0].source.host_organization | https://openalex.org/P4310315730 |
| locations[0].source.host_organization_name | Begell House |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315730 |
| locations[0].source.host_organization_lineage_names | Begell House |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Flow Visualization and Image Processing |
| locations[0].landing_page_url | https://doi.org/10.1615/jflowvisimageproc.2022043908 |
| locations[1].id | pmh:oai:osti.gov:1989939 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/1989939 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5081852265 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Arjun Bhasin |
| authorships[0].affiliations[0].raw_affiliation_string | FERO.AI, Dubai, United Arab Emirates |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arjun Bhasin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | FERO.AI, Dubai, United Arab Emirates |
| authorships[1].author.id | https://openalex.org/A5073624400 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4359-4975 |
| authorships[1].author.display_name | Aashutosh Mistry |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1282105669 |
| authorships[1].affiliations[0].raw_affiliation_string | Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1282105669 |
| authorships[1].institutions[0].ror | https://ror.org/05gvnxz63 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1282105669, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I40347166 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Argonne National Laboratory |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Aashutosh Mistry |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1989939 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CONVOLUTIONAL NEURAL NETWORKS FOR PROBLEMS IN TRANSPORT PHENOMENA: A THEORETICAL MINIMUM |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9763000011444092 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W2368605798, https://openalex.org/W2518037665, https://openalex.org/W2348524959, https://openalex.org/W3183901164, https://openalex.org/W3135818718, https://openalex.org/W4290188444, https://openalex.org/W3167935049, https://openalex.org/W3003905048, https://openalex.org/W2253429366, https://openalex.org/W3127975138 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:1989939 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1989939 |
| primary_location.id | doi:10.1615/jflowvisimageproc.2022043908 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S137131389 |
| primary_location.source.issn | 1065-3090, 1940-4336 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1065-3090 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Flow Visualization and Image Processing |
| primary_location.source.host_organization | https://openalex.org/P4310315730 |
| primary_location.source.host_organization_name | Begell House |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315730 |
| primary_location.source.host_organization_lineage_names | Begell House |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Flow Visualization and Image Processing |
| primary_location.landing_page_url | https://doi.org/10.1615/jflowvisimageproc.2022043908 |
| publication_date | 2022-11-17 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2271840356, https://openalex.org/W2748902594, https://openalex.org/W2797406032, https://openalex.org/W2999555012, https://openalex.org/W2969577977, https://openalex.org/W3175301090, https://openalex.org/W2981246174, https://openalex.org/W3047006557, https://openalex.org/W2973119841, https://openalex.org/W3035733053, https://openalex.org/W4220717841, https://openalex.org/W2917818392, https://openalex.org/W3014753739, https://openalex.org/W3157599415, https://openalex.org/W3161200675, https://openalex.org/W764651262, https://openalex.org/W4221011222, https://openalex.org/W3125013357, https://openalex.org/W2129159835, https://openalex.org/W3046342431, https://openalex.org/W3001544254, https://openalex.org/W3208290324, https://openalex.org/W3035246486, https://openalex.org/W2101926813, https://openalex.org/W3097124738, https://openalex.org/W2967095864, https://openalex.org/W3037979004, https://openalex.org/W2962949934, https://openalex.org/W2998036231, https://openalex.org/W2515505748, https://openalex.org/W1565402342, https://openalex.org/W2965300934, https://openalex.org/W2194775991, https://openalex.org/W2953078715, https://openalex.org/W3003618922, https://openalex.org/W2100495367, https://openalex.org/W3048299477, https://openalex.org/W4221129496, https://openalex.org/W2574952845, https://openalex.org/W1982082993, https://openalex.org/W3151042244, https://openalex.org/W3165730810, https://openalex.org/W2964121744, https://openalex.org/W2618530766, https://openalex.org/W3116287554, https://openalex.org/W2585298970, https://openalex.org/W2144354855, https://openalex.org/W576767351, https://openalex.org/W2147800946, https://openalex.org/W2112796928, https://openalex.org/W4211174697, https://openalex.org/W3168997536, https://openalex.org/W2534240011, https://openalex.org/W3005641041, https://openalex.org/W3109972557, https://openalex.org/W3139111283, https://openalex.org/W4229052372, https://openalex.org/W3048716856, https://openalex.org/W3136441139, https://openalex.org/W2995823297, https://openalex.org/W2802191815, https://openalex.org/W3086398327, https://openalex.org/W2783953992, https://openalex.org/W3023125761, https://openalex.org/W3205762190, https://openalex.org/W4298392474, https://openalex.org/W3119946971, https://openalex.org/W3209556830, https://openalex.org/W6630447605, https://openalex.org/W3124389259, https://openalex.org/W6910563834, https://openalex.org/W1980196517, https://openalex.org/W3203648016, https://openalex.org/W3163000876, https://openalex.org/W3108318745, https://openalex.org/W2604252804, https://openalex.org/W2899283552, https://openalex.org/W2745110207, https://openalex.org/W3212115482, https://openalex.org/W4287813931, https://openalex.org/W2592720772, https://openalex.org/W4287550688, https://openalex.org/W1965368138, https://openalex.org/W3211126885, https://openalex.org/W2962835968, https://openalex.org/W4210837481, https://openalex.org/W3135457600, https://openalex.org/W3092231855, https://openalex.org/W2097117768, https://openalex.org/W3165475162, https://openalex.org/W2963391479, https://openalex.org/W3112314327, https://openalex.org/W2996132844, https://openalex.org/W3136245336, https://openalex.org/W3011193865, https://openalex.org/W3164221504, https://openalex.org/W4296270275, https://openalex.org/W3210848962, https://openalex.org/W3099117237, https://openalex.org/W3131838898, https://openalex.org/W3201195150, https://openalex.org/W3099412592, https://openalex.org/W3084290329, https://openalex.org/W3161295900, https://openalex.org/W3106400375 |
| referenced_works_count | 105 |
| abstract_inverted_index.a | 4, 23, 94, 97, 101, 109, 112 |
| abstract_inverted_index.2D | 24 |
| abstract_inverted_index.If | 144 |
| abstract_inverted_index.an | 20, 64, 141 |
| abstract_inverted_index.as | 63, 140, 184, 186 |
| abstract_inverted_index.be | 61, 69, 86, 167, 182 |
| abstract_inverted_index.in | 11, 76 |
| abstract_inverted_index.is | 22, 30, 148, 164 |
| abstract_inverted_index.of | 26, 33, 44, 57, 123, 157 |
| abstract_inverted_index.on | 16 |
| abstract_inverted_index.or | 40 |
| abstract_inverted_index.to | 71, 96, 103, 111, 166 |
| abstract_inverted_index.up | 154 |
| abstract_inverted_index.we | 80, 126 |
| abstract_inverted_index.(a) | 92 |
| abstract_inverted_index.(b) | 99 |
| abstract_inverted_index.(c) | 107 |
| abstract_inverted_index.CNN | 134 |
| abstract_inverted_index.The | 161 |
| abstract_inverted_index.and | 54, 106 |
| abstract_inverted_index.are | 48 |
| abstract_inverted_index.can | 60, 68, 85, 151, 172, 181 |
| abstract_inverted_index.for | 121, 131 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.the | 31, 45, 116, 128, 155, 158, 175 |
| abstract_inverted_index.CNNs | 67, 150, 180 |
| abstract_inverted_index.Each | 56 |
| abstract_inverted_index.Some | 43 |
| abstract_inverted_index.data | 147 |
| abstract_inverted_index.deep | 5 |
| abstract_inverted_index.each | 122 |
| abstract_inverted_index.heat | 41 |
| abstract_inverted_index.into | 88 |
| abstract_inverted_index.rely | 15 |
| abstract_inverted_index.show | 81 |
| abstract_inverted_index.such | 83, 169, 190 |
| abstract_inverted_index.that | 14, 82, 170 |
| abstract_inverted_index.well | 185 |
| abstract_inverted_index.After | 114 |
| abstract_inverted_index.basic | 90 |
| abstract_inverted_index.drops | 139 |
| abstract_inverted_index.field | 25, 95, 102 |
| abstract_inverted_index.fluid | 51 |
| abstract_inverted_index.image | 21 |
| abstract_inverted_index.mass, | 38 |
| abstract_inverted_index.meant | 165 |
| abstract_inverted_index.solve | 72 |
| abstract_inverted_index.speed | 153 |
| abstract_inverted_index.steps | 130 |
| abstract_inverted_index.these | 58, 124 |
| abstract_inverted_index.three | 89 |
| abstract_inverted_index.using | 136 |
| abstract_inverted_index.where | 179 |
| abstract_inverted_index.(CNN), | 3 |
| abstract_inverted_index.and/or | 188 |
| abstract_inverted_index.assess | 189 |
| abstract_inverted_index.common | 46 |
| abstract_inverted_index.easily | 173 |
| abstract_inverted_index.field, | 105 |
| abstract_inverted_index.field. | 113 |
| abstract_inverted_index.fields | 36, 47, 59 |
| abstract_inverted_index.gained | 9 |
| abstract_inverted_index.images | 18 |
| abstract_inverted_index.liquid | 138 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.useful | 183 |
| abstract_inverted_index.Herein, | 79 |
| abstract_inverted_index.another | 104 |
| abstract_inverted_index.grouped | 87 |
| abstract_inverted_index.mapping | 93, 100, 108 |
| abstract_inverted_index.network | 2 |
| abstract_inverted_index.present | 162 |
| abstract_inverted_index.readers | 171 |
| abstract_inverted_index.science | 32 |
| abstract_inverted_index.sessile | 137 |
| abstract_inverted_index.species | 49 |
| abstract_inverted_index.exemplar | 142 |
| abstract_inverted_index.identify | 174 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.pixels). | 27 |
| abstract_inverted_index.problem. | 143 |
| abstract_inverted_index.problems | 75, 84, 178 |
| abstract_inverted_index.solution | 156 |
| abstract_inverted_index.specific | 73 |
| abstract_inverted_index.studying | 34 |
| abstract_inverted_index.training | 146 |
| abstract_inverted_index.Transport | 28 |
| abstract_inverted_index.construct | 187 |
| abstract_inverted_index.different | 35 |
| abstract_inverted_index.expressed | 62 |
| abstract_inverted_index.image(s). | 65 |
| abstract_inverted_index.leveraged | 70 |
| abstract_inverted_index.momentum, | 39 |
| abstract_inverted_index.necessary | 129 |
| abstract_inverted_index.phenomena | 29, 119, 177 |
| abstract_inverted_index.pressure, | 53 |
| abstract_inverted_index.problems. | 160 |
| abstract_inverted_index.reviewing | 115 |
| abstract_inverted_index.solutions | 135 |
| abstract_inverted_index.transfer. | 42 |
| abstract_inverted_index.transport | 77, 118, 176 |
| abstract_inverted_index.velocity, | 52 |
| abstract_inverted_index.algorithm, | 7 |
| abstract_inverted_index.available, | 149 |
| abstract_inverted_index.descriptor | 98, 110 |
| abstract_inverted_index.discussion | 163 |
| abstract_inverted_index.illustrate | 127 |
| abstract_inverted_index.literature | 120 |
| abstract_inverted_index.phenomena. | 78 |
| abstract_inverted_index.popularity | 10 |
| abstract_inverted_index.scientific | 74 |
| abstract_inverted_index.solutions. | 191 |
| abstract_inverted_index.sufficient | 145 |
| abstract_inverted_index.(typically, | 19 |
| abstract_inverted_index.appropriate | 133 |
| abstract_inverted_index.categories, | 125 |
| abstract_inverted_index.categories: | 91 |
| abstract_inverted_index.applications | 13 |
| abstract_inverted_index.considerably | 152 |
| abstract_inverted_index.constructing | 132 |
| abstract_inverted_index.interpreting | 17 |
| abstract_inverted_index.minimalistic | 168 |
| abstract_inverted_index.representing | 37 |
| abstract_inverted_index.temperature. | 55 |
| abstract_inverted_index.Consequently, | 66 |
| abstract_inverted_index.Convolutional | 0 |
| abstract_inverted_index.corresponding | 159 |
| abstract_inverted_index.technological | 12 |
| abstract_inverted_index.concentration, | 50 |
| abstract_inverted_index.representative | 117 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.62905237 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |