Convolutional Recurrent Neural Networks with a Self-Attention Mechanism for Personnel Performance Prediction Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.3390/e21121227
Personnel performance is important for the high-technology industry to ensure its core competitive advantages are present. Therefore, predicting personnel performance is an important research area in human resource management (HRM). In this paper, to improve prediction performance, we propose a novel framework for personnel performance prediction to help decision-makers to forecast future personnel performance and recruit the best suitable talents. Firstly, a hybrid convolutional recurrent neural network (CRNN) model based on self-attention mechanism is presented, which can automatically learn discriminative features and capture global contextual information from personnel performance data. Moreover, we treat the prediction problem as a classification task. Then, the k-nearest neighbor (KNN) classifier was used to predict personnel performance. The proposed framework is applied to a real case of personnel performance prediction. The experimental results demonstrate that the presented approach achieves significant performance improvement for personnel performance compared to existing methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e21121227
- https://www.mdpi.com/1099-4300/21/12/1227/pdf?version=1576483344
- OA Status
- gold
- Cited By
- 20
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2996255653
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2996255653Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e21121227Digital Object Identifier
- Title
-
Convolutional Recurrent Neural Networks with a Self-Attention Mechanism for Personnel Performance PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-16Full publication date if available
- Authors
-
Xue Xia, Jun Feng, Yi Gao, Meng Liu, Wenyu Zhang, Xia Sun, Aiqi Zhao, Shouxi GuoList of authors in order
- Landing page
-
https://doi.org/10.3390/e21121227Publisher landing page
- PDF URL
-
https://www.mdpi.com/1099-4300/21/12/1227/pdf?version=1576483344Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1099-4300/21/12/1227/pdf?version=1576483344Direct OA link when available
- Concepts
-
Computer science, Machine learning, Artificial intelligence, Convolutional neural network, Performance improvement, Classifier (UML), Performance prediction, Artificial neural network, Task (project management), Recurrent neural network, Mechanism (biology), Simulation, Operations management, Economics, Management, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 4, 2023: 3, 2022: 5, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2996255653 |
|---|---|
| doi | https://doi.org/10.3390/e21121227 |
| ids.doi | https://doi.org/10.3390/e21121227 |
| ids.mag | 2996255653 |
| ids.openalex | https://openalex.org/W2996255653 |
| fwci | 2.98421097 |
| type | article |
| title | Convolutional Recurrent Neural Networks with a Self-Attention Mechanism for Personnel Performance Prediction |
| awards[0].id | https://openalex.org/G1005191455 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61877050 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 12 |
| biblio.volume | 21 |
| biblio.last_page | 1227 |
| biblio.first_page | 1227 |
| topics[0].id | https://openalex.org/T13812 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9945999979972839 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1407 |
| topics[0].subfield.display_name | Organizational Behavior and Human Resource Management |
| topics[0].display_name | AI and HR Technologies |
| topics[1].id | https://openalex.org/T14064 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9659000039100647 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Organizational and Employee Performance |
| topics[2].id | https://openalex.org/T14413 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9657999873161316 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Technologies in Various Fields |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8153043985366821 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5929819941520691 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5812295079231262 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5350981950759888 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C2778915421 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5349743366241455 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3643177 |
| concepts[4].display_name | Performance improvement |
| concepts[5].id | https://openalex.org/C95623464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5316969156265259 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[5].display_name | Classifier (UML) |
| concepts[6].id | https://openalex.org/C2777115002 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5060104727745056 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7168246 |
| concepts[6].display_name | Performance prediction |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47709542512893677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C2780451532 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4730750024318695 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[8].display_name | Task (project management) |
| concepts[9].id | https://openalex.org/C147168706 |
| concepts[9].level | 3 |
| concepts[9].score | 0.41679224371910095 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[9].display_name | Recurrent neural network |
| concepts[10].id | https://openalex.org/C89611455 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41455650329589844 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6804646 |
| concepts[10].display_name | Mechanism (biology) |
| concepts[11].id | https://openalex.org/C44154836 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1390303075313568 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[11].display_name | Simulation |
| concepts[12].id | https://openalex.org/C21547014 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12134766578674316 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[12].display_name | Operations management |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| concepts[14].id | https://openalex.org/C187736073 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[14].display_name | Management |
| concepts[15].id | https://openalex.org/C111472728 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[15].display_name | Epistemology |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8153043985366821 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.5929819941520691 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5812295079231262 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5350981950759888 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/performance-improvement |
| keywords[4].score | 0.5349743366241455 |
| keywords[4].display_name | Performance improvement |
| keywords[5].id | https://openalex.org/keywords/classifier |
| keywords[5].score | 0.5316969156265259 |
| keywords[5].display_name | Classifier (UML) |
| keywords[6].id | https://openalex.org/keywords/performance-prediction |
| keywords[6].score | 0.5060104727745056 |
| keywords[6].display_name | Performance prediction |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.47709542512893677 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/task |
| keywords[8].score | 0.4730750024318695 |
| keywords[8].display_name | Task (project management) |
| keywords[9].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[9].score | 0.41679224371910095 |
| keywords[9].display_name | Recurrent neural network |
| keywords[10].id | https://openalex.org/keywords/mechanism |
| keywords[10].score | 0.41455650329589844 |
| keywords[10].display_name | Mechanism (biology) |
| keywords[11].id | https://openalex.org/keywords/simulation |
| keywords[11].score | 0.1390303075313568 |
| keywords[11].display_name | Simulation |
| keywords[12].id | https://openalex.org/keywords/operations-management |
| keywords[12].score | 0.12134766578674316 |
| keywords[12].display_name | Operations management |
| language | en |
| locations[0].id | doi:10.3390/e21121227 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1099-4300/21/12/1227/pdf?version=1576483344 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e21121227 |
| locations[1].id | pmh:oai:mdpi.com:/1099-4300/21/12/1227/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Entropy |
| locations[1].landing_page_url | http://dx.doi.org/10.3390/e21121227 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:7514572 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7514572 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5077525432 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4926-386X |
| authorships[0].author.display_name | Xue Xia |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I110262843 |
| authorships[0].affiliations[0].raw_affiliation_string | Maths and Information Technology School, Yuncheng University, Yuncheng 044000, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I37802460 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[0].institutions[0].id | https://openalex.org/I37802460 |
| authorships[0].institutions[0].ror | https://ror.org/00z3td547 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37802460 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northwest University |
| authorships[0].institutions[1].id | https://openalex.org/I110262843 |
| authorships[0].institutions[1].ror | https://ror.org/03qt1g669 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I110262843 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Yuncheng University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xia Xue |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Maths and Information Technology School, Yuncheng University, Yuncheng 044000, China, School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[1].author.id | https://openalex.org/A5071285943 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0706-2103 |
| authorships[1].author.display_name | Jun Feng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37802460 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I37802460 |
| authorships[1].affiliations[1].raw_affiliation_string | State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, Northwest University, Xi'an 710127, China |
| authorships[1].institutions[0].id | https://openalex.org/I37802460 |
| authorships[1].institutions[0].ror | https://ror.org/00z3td547 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37802460 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northwest University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jun Feng |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Information Science and Technology, Northwest University, Xi'an 710127, China, State-Province Joint Engineering and Research Center of Advanced Networking and Intelligent Information Services, Northwest University, Xi'an 710127, China |
| authorships[2].author.id | https://openalex.org/A5007598993 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6343-4138 |
| authorships[2].author.display_name | Yi Gao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37802460 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[2].institutions[0].id | https://openalex.org/I37802460 |
| authorships[2].institutions[0].ror | https://ror.org/00z3td547 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I37802460 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Northwest University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yi Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[3].author.id | https://openalex.org/A5100457438 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1582-5764 |
| authorships[3].author.display_name | Meng Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I37802460 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[3].institutions[0].id | https://openalex.org/I37802460 |
| authorships[3].institutions[0].ror | https://ror.org/00z3td547 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I37802460 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northwest University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Meng Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[4].author.id | https://openalex.org/A5101427768 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6143-1977 |
| authorships[4].author.display_name | Wenyu Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2802615301 |
| authorships[4].affiliations[0].raw_affiliation_string | China Aerospace Academy of Systems Science and Engineering, Beijing 100048, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210136859 |
| authorships[4].affiliations[1].raw_affiliation_string | College of Economic and Management, Xi'an University of Posts and Telecommunications, Xi'an 710016, China |
| authorships[4].institutions[0].id | https://openalex.org/I2802615301 |
| authorships[4].institutions[0].ror | https://ror.org/01z8tr155 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I2802615301 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China Aerospace Science and Technology Corporation |
| authorships[4].institutions[1].id | https://openalex.org/I4210136859 |
| authorships[4].institutions[1].ror | https://ror.org/04jn0td46 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210136859 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Xi’an University of Posts and Telecommunications |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wenyu Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | China Aerospace Academy of Systems Science and Engineering, Beijing 100048, China, College of Economic and Management, Xi'an University of Posts and Telecommunications, Xi'an 710016, China |
| authorships[5].author.id | https://openalex.org/A5037149834 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xia Sun |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I37802460 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[5].institutions[0].id | https://openalex.org/I37802460 |
| authorships[5].institutions[0].ror | https://ror.org/00z3td547 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I37802460 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Northwest University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xia Sun |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[6].author.id | https://openalex.org/A5033168088 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Aiqi Zhao |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I37802460 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[6].institutions[0].id | https://openalex.org/I37802460 |
| authorships[6].institutions[0].ror | https://ror.org/00z3td547 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I37802460 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Northwest University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Aiqi Zhao |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[7].author.id | https://openalex.org/A5049743138 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Shouxi Guo |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I37802460 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| authorships[7].institutions[0].id | https://openalex.org/I37802460 |
| authorships[7].institutions[0].ror | https://ror.org/00z3td547 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I37802460 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Northwest University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Shouxi Guo |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Information Science and Technology, Northwest University, Xi'an 710127, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1099-4300/21/12/1227/pdf?version=1576483344 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Convolutional Recurrent Neural Networks with a Self-Attention Mechanism for Personnel Performance Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13812 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9945999979972839 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1407 |
| primary_topic.subfield.display_name | Organizational Behavior and Human Resource Management |
| primary_topic.display_name | AI and HR Technologies |
| related_works | https://openalex.org/W4210891154, https://openalex.org/W3207786695, https://openalex.org/W3183338161, https://openalex.org/W2008327491, https://openalex.org/W3145540143, https://openalex.org/W2321868906, https://openalex.org/W2100997884, https://openalex.org/W2174199525, https://openalex.org/W2756782242, https://openalex.org/W1483675448 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/e21121227 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1099-4300/21/12/1227/pdf?version=1576483344 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e21121227 |
| primary_location.id | doi:10.3390/e21121227 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1099-4300/21/12/1227/pdf?version=1576483344 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e21121227 |
| publication_date | 2019-12-16 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2006762481, https://openalex.org/W2246393213, https://openalex.org/W6629057644, https://openalex.org/W2260124865, https://openalex.org/W2149952486, https://openalex.org/W2100495367, https://openalex.org/W2919115771, https://openalex.org/W2183341477, https://openalex.org/W2793701907, https://openalex.org/W2921528571, https://openalex.org/W2963037989, https://openalex.org/W2613718673, https://openalex.org/W2747664154, https://openalex.org/W2963604492, https://openalex.org/W2802436364, https://openalex.org/W2910406387, https://openalex.org/W2112796928, https://openalex.org/W2058818389, https://openalex.org/W2090711836, https://openalex.org/W2110981638, https://openalex.org/W2127561454, https://openalex.org/W2041166092, https://openalex.org/W2963097656, https://openalex.org/W6763611693, https://openalex.org/W2163605009, https://openalex.org/W2120615054, https://openalex.org/W2473593971, https://openalex.org/W2485374661, https://openalex.org/W2787396463, https://openalex.org/W2585724928, https://openalex.org/W2887712318, https://openalex.org/W2648802171, https://openalex.org/W6621483976, https://openalex.org/W2788574423, https://openalex.org/W2740382415, https://openalex.org/W2913153715, https://openalex.org/W2270470215, https://openalex.org/W2801908962, https://openalex.org/W2910152998, https://openalex.org/W2042187870, https://openalex.org/W2103271443, https://openalex.org/W2064675550, https://openalex.org/W2133564696, https://openalex.org/W2079471494, https://openalex.org/W2949300694, https://openalex.org/W2964308564, https://openalex.org/W650350307, https://openalex.org/W1485330246, https://openalex.org/W2950121408 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 39, 61, 97, 118 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.an | 21 |
| abstract_inverted_index.as | 96 |
| abstract_inverted_index.in | 25 |
| abstract_inverted_index.is | 2, 20, 73, 115 |
| abstract_inverted_index.of | 121 |
| abstract_inverted_index.on | 70 |
| abstract_inverted_index.to | 8, 33, 46, 49, 108, 117, 141 |
| abstract_inverted_index.we | 37, 91 |
| abstract_inverted_index.The | 112, 125 |
| abstract_inverted_index.and | 54, 81 |
| abstract_inverted_index.are | 14 |
| abstract_inverted_index.can | 76 |
| abstract_inverted_index.for | 4, 42, 137 |
| abstract_inverted_index.its | 10 |
| abstract_inverted_index.the | 5, 56, 93, 101, 130 |
| abstract_inverted_index.was | 106 |
| abstract_inverted_index.area | 24 |
| abstract_inverted_index.best | 57 |
| abstract_inverted_index.case | 120 |
| abstract_inverted_index.core | 11 |
| abstract_inverted_index.from | 86 |
| abstract_inverted_index.help | 47 |
| abstract_inverted_index.real | 119 |
| abstract_inverted_index.that | 129 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.used | 107 |
| abstract_inverted_index.(KNN) | 104 |
| abstract_inverted_index.Then, | 100 |
| abstract_inverted_index.based | 69 |
| abstract_inverted_index.data. | 89 |
| abstract_inverted_index.human | 26 |
| abstract_inverted_index.learn | 78 |
| abstract_inverted_index.model | 68 |
| abstract_inverted_index.novel | 40 |
| abstract_inverted_index.task. | 99 |
| abstract_inverted_index.treat | 92 |
| abstract_inverted_index.which | 75 |
| abstract_inverted_index.(CRNN) | 67 |
| abstract_inverted_index.(HRM). | 29 |
| abstract_inverted_index.ensure | 9 |
| abstract_inverted_index.future | 51 |
| abstract_inverted_index.global | 83 |
| abstract_inverted_index.hybrid | 62 |
| abstract_inverted_index.neural | 65 |
| abstract_inverted_index.paper, | 32 |
| abstract_inverted_index.applied | 116 |
| abstract_inverted_index.capture | 82 |
| abstract_inverted_index.improve | 34 |
| abstract_inverted_index.network | 66 |
| abstract_inverted_index.predict | 109 |
| abstract_inverted_index.problem | 95 |
| abstract_inverted_index.propose | 38 |
| abstract_inverted_index.recruit | 55 |
| abstract_inverted_index.results | 127 |
| abstract_inverted_index.Firstly, | 60 |
| abstract_inverted_index.achieves | 133 |
| abstract_inverted_index.approach | 132 |
| abstract_inverted_index.compared | 140 |
| abstract_inverted_index.existing | 142 |
| abstract_inverted_index.features | 80 |
| abstract_inverted_index.forecast | 50 |
| abstract_inverted_index.industry | 7 |
| abstract_inverted_index.methods. | 143 |
| abstract_inverted_index.neighbor | 103 |
| abstract_inverted_index.present. | 15 |
| abstract_inverted_index.proposed | 113 |
| abstract_inverted_index.research | 23 |
| abstract_inverted_index.resource | 27 |
| abstract_inverted_index.suitable | 58 |
| abstract_inverted_index.talents. | 59 |
| abstract_inverted_index.Moreover, | 90 |
| abstract_inverted_index.Personnel | 0 |
| abstract_inverted_index.framework | 41, 114 |
| abstract_inverted_index.important | 3, 22 |
| abstract_inverted_index.k-nearest | 102 |
| abstract_inverted_index.mechanism | 72 |
| abstract_inverted_index.personnel | 18, 43, 52, 87, 110, 122, 138 |
| abstract_inverted_index.presented | 131 |
| abstract_inverted_index.recurrent | 64 |
| abstract_inverted_index.Therefore, | 16 |
| abstract_inverted_index.advantages | 13 |
| abstract_inverted_index.classifier | 105 |
| abstract_inverted_index.contextual | 84 |
| abstract_inverted_index.management | 28 |
| abstract_inverted_index.predicting | 17 |
| abstract_inverted_index.prediction | 35, 45, 94 |
| abstract_inverted_index.presented, | 74 |
| abstract_inverted_index.competitive | 12 |
| abstract_inverted_index.demonstrate | 128 |
| abstract_inverted_index.improvement | 136 |
| abstract_inverted_index.information | 85 |
| abstract_inverted_index.performance | 1, 19, 44, 53, 88, 123, 135, 139 |
| abstract_inverted_index.prediction. | 124 |
| abstract_inverted_index.significant | 134 |
| abstract_inverted_index.experimental | 126 |
| abstract_inverted_index.performance, | 36 |
| abstract_inverted_index.performance. | 111 |
| abstract_inverted_index.automatically | 77 |
| abstract_inverted_index.convolutional | 63 |
| abstract_inverted_index.classification | 98 |
| abstract_inverted_index.discriminative | 79 |
| abstract_inverted_index.self-attention | 71 |
| abstract_inverted_index.decision-makers | 48 |
| abstract_inverted_index.high-technology | 6 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5037149834, https://openalex.org/A5071285943 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I37802460 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.90127841 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |