Coordinate-based neural representations for computational adaptive optics in widefield microscopy Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.03812
Widefield microscopy is widely used for non-invasive imaging of biological structures at subcellular resolution. When applied to complex specimen, its image quality is degraded by sample-induced optical aberration. Adaptive optics can correct wavefront distortion and restore diffraction-limited resolution but require wavefront sensing and corrective devices, increasing system complexity and cost. Here, we describe a self-supervised machine learning algorithm, CoCoA, that performs joint wavefront estimation and three-dimensional structural information extraction from a single input 3D image stack without the need for external training dataset. We implemented CoCoA for widefield imaging of mouse brain tissues and validated its performance with direct-wavefront-sensing-based adaptive optics. Importantly, we systematically explored and quantitatively characterized the limiting factors of CoCoA's performance. Using CoCoA, we demonstrated the first in vivo widefield mouse brain imaging using machine-learning-based adaptive optics. Incorporating coordinate-based neural representations and a forward physics model, the self-supervised scheme of CoCoA should be applicable to microscopy modalities in general.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.03812
- https://arxiv.org/pdf/2307.03812
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383987281
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383987281Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.03812Digital Object Identifier
- Title
-
Coordinate-based neural representations for computational adaptive optics in widefield microscopyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-07Full publication date if available
- Authors
-
Iksung Kang, Qinrong Zhang, Stella X. Yu, Na JiList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.03812Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.03812Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.03812Direct OA link when available
- Concepts
-
Wavefront, Adaptive optics, Computer science, Optics, Distortion (music), Image quality, Computer vision, Artificial intelligence, Artificial neural network, Microscopy, Deformable mirror, Physics, Image (mathematics), Bandwidth (computing), Amplifier, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383987281 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.03812 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.03812 |
| ids.openalex | https://openalex.org/W4383987281 |
| fwci | 0.30785145 |
| type | preprint |
| title | Coordinate-based neural representations for computational adaptive optics in widefield microscopy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10540 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Advanced Fluorescence Microscopy Techniques |
| topics[1].id | https://openalex.org/T11569 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9957000017166138 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Optical Coherence Tomography Applications |
| topics[2].id | https://openalex.org/T12015 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Photoacoustic and Ultrasonic Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165699331 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8272264003753662 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q461533 |
| concepts[0].display_name | Wavefront |
| concepts[1].id | https://openalex.org/C132771110 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8087844252586365 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q506922 |
| concepts[1].display_name | Adaptive optics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6329827904701233 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C120665830 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5745530724525452 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[3].display_name | Optics |
| concepts[4].id | https://openalex.org/C126780896 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5708297491073608 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q899871 |
| concepts[4].display_name | Distortion (music) |
| concepts[5].id | https://openalex.org/C55020928 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4853712320327759 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[5].display_name | Image quality |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.47607913613319397 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4756312370300293 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4374941885471344 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C147080431 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4238992929458618 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1074953 |
| concepts[9].display_name | Microscopy |
| concepts[10].id | https://openalex.org/C136872047 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4184207320213318 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5251695 |
| concepts[10].display_name | Deformable mirror |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.24151697754859924 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.18363365530967712 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C2776257435 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[13].display_name | Bandwidth (computing) |
| concepts[14].id | https://openalex.org/C194257627 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q211554 |
| concepts[14].display_name | Amplifier |
| concepts[15].id | https://openalex.org/C31258907 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[15].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/wavefront |
| keywords[0].score | 0.8272264003753662 |
| keywords[0].display_name | Wavefront |
| keywords[1].id | https://openalex.org/keywords/adaptive-optics |
| keywords[1].score | 0.8087844252586365 |
| keywords[1].display_name | Adaptive optics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6329827904701233 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/optics |
| keywords[3].score | 0.5745530724525452 |
| keywords[3].display_name | Optics |
| keywords[4].id | https://openalex.org/keywords/distortion |
| keywords[4].score | 0.5708297491073608 |
| keywords[4].display_name | Distortion (music) |
| keywords[5].id | https://openalex.org/keywords/image-quality |
| keywords[5].score | 0.4853712320327759 |
| keywords[5].display_name | Image quality |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.47607913613319397 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4756312370300293 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.4374941885471344 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/microscopy |
| keywords[9].score | 0.4238992929458618 |
| keywords[9].display_name | Microscopy |
| keywords[10].id | https://openalex.org/keywords/deformable-mirror |
| keywords[10].score | 0.4184207320213318 |
| keywords[10].display_name | Deformable mirror |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.24151697754859924 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.18363365530967712 |
| keywords[12].display_name | Image (mathematics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.03812 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.03812 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.03812 |
| locations[1].id | pmh:oai:figshare.com:article/23669040 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/preprint/Coordinate-based_neural_representations_for_computational_adaptive_optics_in_widefield_microscopy/23669040 |
| locations[2].id | doi:10.48550/arxiv.2307.03812 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2307.03812 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5010815339 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4009-6743 |
| authorships[0].author.display_name | Iksung Kang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Iksung Kang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078554070 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8893-514X |
| authorships[1].author.display_name | Qinrong Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qinrong Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5042014034 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3507-5761 |
| authorships[2].author.display_name | Stella X. Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stella X. Yu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5047895845 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5527-1663 |
| authorships[3].author.display_name | Na Ji |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Na Ji |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.03812 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-07-12T00:00:00 |
| display_name | Coordinate-based neural representations for computational adaptive optics in widefield microscopy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10540 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Advanced Fluorescence Microscopy Techniques |
| related_works | https://openalex.org/W2049040703, https://openalex.org/W1994127078, https://openalex.org/W2134289278, https://openalex.org/W2011287895, https://openalex.org/W3006686693, https://openalex.org/W3089669291, https://openalex.org/W2470712152, https://openalex.org/W2145258792, https://openalex.org/W2041540533, https://openalex.org/W1686858693 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.03812 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.03812 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.03812 |
| primary_location.id | pmh:oai:arXiv.org:2307.03812 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.03812 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.03812 |
| publication_date | 2023-07-07 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 53, 70, 135 |
| abstract_inverted_index.3D | 73 |
| abstract_inverted_index.We | 83 |
| abstract_inverted_index.at | 11 |
| abstract_inverted_index.be | 145 |
| abstract_inverted_index.by | 24 |
| abstract_inverted_index.in | 120, 150 |
| abstract_inverted_index.is | 2, 22 |
| abstract_inverted_index.of | 8, 89, 111, 142 |
| abstract_inverted_index.to | 16, 147 |
| abstract_inverted_index.we | 51, 102, 116 |
| abstract_inverted_index.and | 34, 42, 48, 64, 93, 105, 134 |
| abstract_inverted_index.but | 38 |
| abstract_inverted_index.can | 30 |
| abstract_inverted_index.for | 5, 79, 86 |
| abstract_inverted_index.its | 19, 95 |
| abstract_inverted_index.the | 77, 108, 118, 139 |
| abstract_inverted_index.When | 14 |
| abstract_inverted_index.from | 69 |
| abstract_inverted_index.need | 78 |
| abstract_inverted_index.that | 59 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.vivo | 121 |
| abstract_inverted_index.with | 97 |
| abstract_inverted_index.CoCoA | 85, 143 |
| abstract_inverted_index.Here, | 50 |
| abstract_inverted_index.Using | 114 |
| abstract_inverted_index.brain | 91, 124 |
| abstract_inverted_index.cost. | 49 |
| abstract_inverted_index.first | 119 |
| abstract_inverted_index.image | 20, 74 |
| abstract_inverted_index.input | 72 |
| abstract_inverted_index.joint | 61 |
| abstract_inverted_index.mouse | 90, 123 |
| abstract_inverted_index.stack | 75 |
| abstract_inverted_index.using | 126 |
| abstract_inverted_index.CoCoA, | 58, 115 |
| abstract_inverted_index.model, | 138 |
| abstract_inverted_index.neural | 132 |
| abstract_inverted_index.optics | 29 |
| abstract_inverted_index.scheme | 141 |
| abstract_inverted_index.should | 144 |
| abstract_inverted_index.single | 71 |
| abstract_inverted_index.system | 46 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.CoCoA's | 112 |
| abstract_inverted_index.applied | 15 |
| abstract_inverted_index.complex | 17 |
| abstract_inverted_index.correct | 31 |
| abstract_inverted_index.factors | 110 |
| abstract_inverted_index.forward | 136 |
| abstract_inverted_index.imaging | 7, 88, 125 |
| abstract_inverted_index.machine | 55 |
| abstract_inverted_index.optical | 26 |
| abstract_inverted_index.optics. | 100, 129 |
| abstract_inverted_index.physics | 137 |
| abstract_inverted_index.quality | 21 |
| abstract_inverted_index.require | 39 |
| abstract_inverted_index.restore | 35 |
| abstract_inverted_index.sensing | 41 |
| abstract_inverted_index.tissues | 92 |
| abstract_inverted_index.without | 76 |
| abstract_inverted_index.Adaptive | 28 |
| abstract_inverted_index.adaptive | 99, 128 |
| abstract_inverted_index.dataset. | 82 |
| abstract_inverted_index.degraded | 23 |
| abstract_inverted_index.describe | 52 |
| abstract_inverted_index.devices, | 44 |
| abstract_inverted_index.explored | 104 |
| abstract_inverted_index.external | 80 |
| abstract_inverted_index.general. | 151 |
| abstract_inverted_index.learning | 56 |
| abstract_inverted_index.limiting | 109 |
| abstract_inverted_index.performs | 60 |
| abstract_inverted_index.training | 81 |
| abstract_inverted_index.Widefield | 0 |
| abstract_inverted_index.specimen, | 18 |
| abstract_inverted_index.validated | 94 |
| abstract_inverted_index.wavefront | 32, 40, 62 |
| abstract_inverted_index.widefield | 87, 122 |
| abstract_inverted_index.algorithm, | 57 |
| abstract_inverted_index.applicable | 146 |
| abstract_inverted_index.biological | 9 |
| abstract_inverted_index.complexity | 47 |
| abstract_inverted_index.corrective | 43 |
| abstract_inverted_index.distortion | 33 |
| abstract_inverted_index.estimation | 63 |
| abstract_inverted_index.extraction | 68 |
| abstract_inverted_index.increasing | 45 |
| abstract_inverted_index.microscopy | 1, 148 |
| abstract_inverted_index.modalities | 149 |
| abstract_inverted_index.resolution | 37 |
| abstract_inverted_index.structural | 66 |
| abstract_inverted_index.structures | 10 |
| abstract_inverted_index.aberration. | 27 |
| abstract_inverted_index.implemented | 84 |
| abstract_inverted_index.information | 67 |
| abstract_inverted_index.performance | 96 |
| abstract_inverted_index.resolution. | 13 |
| abstract_inverted_index.subcellular | 12 |
| abstract_inverted_index.Importantly, | 101 |
| abstract_inverted_index.demonstrated | 117 |
| abstract_inverted_index.non-invasive | 6 |
| abstract_inverted_index.performance. | 113 |
| abstract_inverted_index.Incorporating | 130 |
| abstract_inverted_index.characterized | 107 |
| abstract_inverted_index.quantitatively | 106 |
| abstract_inverted_index.sample-induced | 25 |
| abstract_inverted_index.systematically | 103 |
| abstract_inverted_index.representations | 133 |
| abstract_inverted_index.self-supervised | 54, 140 |
| abstract_inverted_index.coordinate-based | 131 |
| abstract_inverted_index.three-dimensional | 65 |
| abstract_inverted_index.diffraction-limited | 36 |
| abstract_inverted_index.machine-learning-based | 127 |
| abstract_inverted_index.direct-wavefront-sensing-based | 98 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.76106487 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |