Copy‐Paste Augmentation Improves Automatic Species Identification in Camera Trap Images Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/ece3.72357
Effective conservation requires effective biodiversity monitoring. The pace of global biodiversity change far outstrips the ability of manual fieldwork to monitor it. Therefore, technological solutions, like camera traps, have emerged as a crucial way to meet biodiversity monitoring needs. Camera traps produce vast amounts of data, and so AI is increasingly used to label images with species identities. However, AI struggles to identify species from new locations that are not part of the training data (‘generalisation’). Resolving this is crucial for the promise of automated biodiversity monitoring to be realised. Here we use ‘copy‐paste’ augmentation to help resolve the generalisation challenge. Copy‐paste augmentation refers to isolating animal ‘segments’ from existing images and pasting the segments onto novel backgrounds to create new, synthetic images that are then used as part of the training data. Theoretically, this could make a model agnostic to backgrounds and therefore more able to generalise to unseen locations. While generation of synthetic images is commonly used as an augmentation method in other fields, such as medicine, it has not been used before in biodiversity science. We found that copy‐paste augmentation improved the ability of AI to identify species in new, unseen locations by 8% ± 2%. There was species‐level variation in improvement, but the vast majority of species benefited from the approach. We found mixed results when using copy‐paste augmentation on models trained with very small numbers of images (1–8 per species). Copy‐paste augmentation improves the ability of AI models to generalise to new, unseen locations. Our method also shows promise for resolving the challenge of long‐tailed camera trap data. AIs perform poorly on species in the ‘long tail’ of these distributions because there are very few images to train on. Copy‐paste augmentation can help rebalance datasets by adding synthetic images of underrepresented species. Overall, our results suggest a promising role for augmentation methods that generate new, synthetic images in biodiversity science. Ecologists and conservationists must move beyond simple augmentation methods, such as image transformations, if we are to resolve key challenges in species identification AI.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/ece3.72357
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ece3.72357
- OA Status
- gold
- References
- 18
- OpenAlex ID
- https://openalex.org/W4415938803
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415938803Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/ece3.72357Digital Object Identifier
- Title
-
Copy‐Paste Augmentation Improves Automatic Species Identification in Camera Trap ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-01Full publication date if available
- Authors
-
Cédric Mesnage, Anne Corbett, Jake Curry, Sareh Rowlands, Anjan Dutta, Richard Everson, Benno I. SimmonsList of authors in order
- Landing page
-
https://doi.org/10.1002/ece3.72357Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ece3.72357Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ece3.72357Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
18Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415938803 |
|---|---|
| doi | https://doi.org/10.1002/ece3.72357 |
| ids.doi | https://doi.org/10.1002/ece3.72357 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41200244 |
| ids.openalex | https://openalex.org/W4415938803 |
| fwci | |
| type | article |
| title | Copy‐Paste Augmentation Improves Automatic Species Identification in Camera Trap Images |
| biblio.issue | 11 |
| biblio.volume | 15 |
| biblio.last_page | e72357 |
| biblio.first_page | e72357 |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| language | en |
| locations[0].id | doi:10.1002/ece3.72357 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2482021738 |
| locations[0].source.issn | 2045-7758 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-7758 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Ecology and Evolution |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ece3.72357 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Ecology and Evolution |
| locations[0].landing_page_url | https://doi.org/10.1002/ece3.72357 |
| locations[1].id | pmid:41200244 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Ecology and evolution |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41200244 |
| locations[2].id | pmh:oai:doaj.org/article:d4b84fa5e7c34deaa6064f99d7a0dedf |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Ecology and Evolution, Vol 15, Iss 11, Pp n/a-n/a (2025) |
| locations[2].landing_page_url | https://doaj.org/article/d4b84fa5e7c34deaa6064f99d7a0dedf |
| locations[3].id | pmh:oai:europepmc.org:11397691 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12588685 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5082068867 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2004-6378 |
| authorships[0].author.display_name | Cédric Mesnage |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I23923803 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Exeter, Exeter, UK |
| authorships[0].institutions[0].id | https://openalex.org/I23923803 |
| authorships[0].institutions[0].ror | https://ror.org/03yghzc09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I23923803 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Exeter |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cédric S. Mesnage |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Exeter, Exeter, UK |
| authorships[1].author.id | https://openalex.org/A5089176981 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2015-0316 |
| authorships[1].author.display_name | Anne Corbett |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I23923803 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Data Science and Artificial Intelligence, University of Exeter, Exeter, UK |
| authorships[1].institutions[0].id | https://openalex.org/I23923803 |
| authorships[1].institutions[0].ror | https://ror.org/03yghzc09 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I23923803 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Exeter |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andrew Corbett |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Data Science and Artificial Intelligence, University of Exeter, Exeter, UK |
| authorships[2].author.id | https://openalex.org/A5110331976 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jake Curry |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I23923803 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Ecology and Conservation, University of Exeter, Penryn, UK |
| authorships[2].institutions[0].id | https://openalex.org/I23923803 |
| authorships[2].institutions[0].ror | https://ror.org/03yghzc09 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I23923803 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Exeter |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jake Curry |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre for Ecology and Conservation, University of Exeter, Penryn, UK |
| authorships[3].author.id | https://openalex.org/A5000889175 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6783-3064 |
| authorships[3].author.display_name | Sareh Rowlands |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I23923803 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Exeter, Exeter, UK |
| authorships[3].institutions[0].id | https://openalex.org/I23923803 |
| authorships[3].institutions[0].ror | https://ror.org/03yghzc09 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I23923803 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Exeter |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sareh Rowlands |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, University of Exeter, Exeter, UK |
| authorships[4].author.id | https://openalex.org/A5008386240 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1667-2245 |
| authorships[4].author.display_name | Anjan Dutta |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I28290843 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford, UK |
| authorships[4].institutions[0].id | https://openalex.org/I28290843 |
| authorships[4].institutions[0].ror | https://ror.org/00ks66431 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I28290843 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Surrey |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Anjan Dutta |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford, UK |
| authorships[5].author.id | https://openalex.org/A5016900158 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3964-1150 |
| authorships[5].author.display_name | Richard Everson |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I23923803 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Exeter, Exeter, UK |
| authorships[5].institutions[0].id | https://openalex.org/I23923803 |
| authorships[5].institutions[0].ror | https://ror.org/03yghzc09 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I23923803 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University of Exeter |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Richard Everson |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science, University of Exeter, Exeter, UK |
| authorships[6].author.id | https://openalex.org/A5051130262 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2751-9430 |
| authorships[6].author.display_name | Benno I. Simmons |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I23923803 |
| authorships[6].affiliations[0].raw_affiliation_string | Centre for Ecology and Conservation, University of Exeter, Penryn, UK |
| authorships[6].institutions[0].id | https://openalex.org/I23923803 |
| authorships[6].institutions[0].ror | https://ror.org/03yghzc09 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I23923803 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | University of Exeter |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Benno I. Simmons |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Centre for Ecology and Conservation, University of Exeter, Penryn, UK |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ece3.72357 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-06T00:00:00 |
| display_name | Copy‐Paste Augmentation Improves Automatic Species Identification in Camera Trap Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T09:02:37.947436 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1002/ece3.72357 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2482021738 |
| best_oa_location.source.issn | 2045-7758 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-7758 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Ecology and Evolution |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ece3.72357 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Ecology and Evolution |
| best_oa_location.landing_page_url | https://doi.org/10.1002/ece3.72357 |
| primary_location.id | doi:10.1002/ece3.72357 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2482021738 |
| primary_location.source.issn | 2045-7758 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-7758 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Ecology and Evolution |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ece3.72357 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Ecology and Evolution |
| primary_location.landing_page_url | https://doi.org/10.1002/ece3.72357 |
| publication_date | 2025-11-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3157571958, https://openalex.org/W2013138857, https://openalex.org/W3134630366, https://openalex.org/W4312114404, https://openalex.org/W3176659256, https://openalex.org/W4283034400, https://openalex.org/W2919115771, https://openalex.org/W4281685334, https://openalex.org/W4386289416, https://openalex.org/W3093414036, https://openalex.org/W3025800305, https://openalex.org/W3009074285, https://openalex.org/W3011707748, https://openalex.org/W2954996726, https://openalex.org/W2413367505, https://openalex.org/W2952113774, https://openalex.org/W4388037272, https://openalex.org/W2895082331 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 32, 138, 302 |
| abstract_inverted_index.8% | 197 |
| abstract_inverted_index.AI | 49, 60, 188, 242 |
| abstract_inverted_index.We | 179, 216 |
| abstract_inverted_index.an | 161 |
| abstract_inverted_index.as | 31, 128, 160, 168, 326 |
| abstract_inverted_index.be | 89 |
| abstract_inverted_index.by | 196, 291 |
| abstract_inverted_index.if | 329 |
| abstract_inverted_index.in | 164, 176, 192, 204, 269, 313, 336 |
| abstract_inverted_index.is | 50, 79, 157 |
| abstract_inverted_index.it | 170 |
| abstract_inverted_index.of | 9, 17, 45, 72, 84, 130, 154, 187, 210, 231, 241, 259, 273, 295 |
| abstract_inverted_index.on | 224, 267 |
| abstract_inverted_index.so | 48 |
| abstract_inverted_index.to | 20, 35, 53, 62, 88, 96, 105, 119, 141, 147, 149, 189, 244, 246, 282, 332 |
| abstract_inverted_index.we | 92, 330 |
| abstract_inverted_index.± | 198 |
| abstract_inverted_index.2%. | 199 |
| abstract_inverted_index.AI. | 339 |
| abstract_inverted_index.AIs | 264 |
| abstract_inverted_index.Our | 250 |
| abstract_inverted_index.The | 7 |
| abstract_inverted_index.and | 47, 112, 143, 317 |
| abstract_inverted_index.are | 69, 125, 278, 331 |
| abstract_inverted_index.but | 206 |
| abstract_inverted_index.can | 287 |
| abstract_inverted_index.far | 13 |
| abstract_inverted_index.few | 280 |
| abstract_inverted_index.for | 81, 255, 305 |
| abstract_inverted_index.has | 171 |
| abstract_inverted_index.it. | 22 |
| abstract_inverted_index.key | 334 |
| abstract_inverted_index.new | 66 |
| abstract_inverted_index.not | 70, 172 |
| abstract_inverted_index.on. | 284 |
| abstract_inverted_index.our | 299 |
| abstract_inverted_index.per | 234 |
| abstract_inverted_index.the | 15, 73, 82, 99, 114, 131, 185, 207, 214, 239, 257, 270 |
| abstract_inverted_index.use | 93 |
| abstract_inverted_index.was | 201 |
| abstract_inverted_index.way | 34 |
| abstract_inverted_index.Here | 91 |
| abstract_inverted_index.able | 146 |
| abstract_inverted_index.also | 252 |
| abstract_inverted_index.been | 173 |
| abstract_inverted_index.data | 75 |
| abstract_inverted_index.from | 65, 109, 213 |
| abstract_inverted_index.have | 29 |
| abstract_inverted_index.help | 97, 288 |
| abstract_inverted_index.like | 26 |
| abstract_inverted_index.make | 137 |
| abstract_inverted_index.meet | 36 |
| abstract_inverted_index.more | 145 |
| abstract_inverted_index.move | 320 |
| abstract_inverted_index.must | 319 |
| abstract_inverted_index.new, | 121, 193, 247, 310 |
| abstract_inverted_index.onto | 116 |
| abstract_inverted_index.pace | 8 |
| abstract_inverted_index.part | 71, 129 |
| abstract_inverted_index.role | 304 |
| abstract_inverted_index.such | 167, 325 |
| abstract_inverted_index.that | 68, 124, 181, 308 |
| abstract_inverted_index.then | 126 |
| abstract_inverted_index.this | 78, 135 |
| abstract_inverted_index.trap | 262 |
| abstract_inverted_index.used | 52, 127, 159, 174 |
| abstract_inverted_index.vast | 43, 208 |
| abstract_inverted_index.very | 228, 279 |
| abstract_inverted_index.when | 220 |
| abstract_inverted_index.with | 56, 227 |
| abstract_inverted_index.There | 200 |
| abstract_inverted_index.While | 152 |
| abstract_inverted_index.could | 136 |
| abstract_inverted_index.data, | 46 |
| abstract_inverted_index.data. | 133, 263 |
| abstract_inverted_index.found | 180, 217 |
| abstract_inverted_index.image | 327 |
| abstract_inverted_index.label | 54 |
| abstract_inverted_index.mixed | 218 |
| abstract_inverted_index.model | 139 |
| abstract_inverted_index.novel | 117 |
| abstract_inverted_index.other | 165 |
| abstract_inverted_index.shows | 253 |
| abstract_inverted_index.small | 229 |
| abstract_inverted_index.there | 277 |
| abstract_inverted_index.these | 274 |
| abstract_inverted_index.train | 283 |
| abstract_inverted_index.traps | 41 |
| abstract_inverted_index.using | 221 |
| abstract_inverted_index.(1–8 | 233 |
| abstract_inverted_index.Camera | 40 |
| abstract_inverted_index.adding | 292 |
| abstract_inverted_index.animal | 107 |
| abstract_inverted_index.before | 175 |
| abstract_inverted_index.beyond | 321 |
| abstract_inverted_index.camera | 27, 261 |
| abstract_inverted_index.change | 12 |
| abstract_inverted_index.create | 120 |
| abstract_inverted_index.global | 10 |
| abstract_inverted_index.images | 55, 111, 123, 156, 232, 281, 294, 312 |
| abstract_inverted_index.manual | 18 |
| abstract_inverted_index.method | 163, 251 |
| abstract_inverted_index.models | 225, 243 |
| abstract_inverted_index.needs. | 39 |
| abstract_inverted_index.poorly | 266 |
| abstract_inverted_index.refers | 104 |
| abstract_inverted_index.simple | 322 |
| abstract_inverted_index.traps, | 28 |
| abstract_inverted_index.unseen | 150, 194, 248 |
| abstract_inverted_index.ability | 16, 186, 240 |
| abstract_inverted_index.amounts | 44 |
| abstract_inverted_index.because | 276 |
| abstract_inverted_index.crucial | 33, 80 |
| abstract_inverted_index.emerged | 30 |
| abstract_inverted_index.fields, | 166 |
| abstract_inverted_index.methods | 307 |
| abstract_inverted_index.monitor | 21 |
| abstract_inverted_index.numbers | 230 |
| abstract_inverted_index.pasting | 113 |
| abstract_inverted_index.perform | 265 |
| abstract_inverted_index.produce | 42 |
| abstract_inverted_index.promise | 83, 254 |
| abstract_inverted_index.resolve | 98, 333 |
| abstract_inverted_index.results | 219, 300 |
| abstract_inverted_index.species | 57, 64, 191, 211, 268, 337 |
| abstract_inverted_index.suggest | 301 |
| abstract_inverted_index.tail’ | 272 |
| abstract_inverted_index.trained | 226 |
| abstract_inverted_index.‘long | 271 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.However, | 59 |
| abstract_inverted_index.Overall, | 298 |
| abstract_inverted_index.agnostic | 140 |
| abstract_inverted_index.commonly | 158 |
| abstract_inverted_index.datasets | 290 |
| abstract_inverted_index.existing | 110 |
| abstract_inverted_index.generate | 309 |
| abstract_inverted_index.identify | 63, 190 |
| abstract_inverted_index.improved | 184 |
| abstract_inverted_index.improves | 238 |
| abstract_inverted_index.majority | 209 |
| abstract_inverted_index.methods, | 324 |
| abstract_inverted_index.requires | 3 |
| abstract_inverted_index.science. | 178, 315 |
| abstract_inverted_index.segments | 115 |
| abstract_inverted_index.species. | 297 |
| abstract_inverted_index.training | 74, 132 |
| abstract_inverted_index.Effective | 1 |
| abstract_inverted_index.Resolving | 77 |
| abstract_inverted_index.approach. | 215 |
| abstract_inverted_index.automated | 85 |
| abstract_inverted_index.benefited | 212 |
| abstract_inverted_index.challenge | 258 |
| abstract_inverted_index.effective | 4 |
| abstract_inverted_index.fieldwork | 19 |
| abstract_inverted_index.isolating | 106 |
| abstract_inverted_index.locations | 67, 195 |
| abstract_inverted_index.medicine, | 169 |
| abstract_inverted_index.outstrips | 14 |
| abstract_inverted_index.promising | 303 |
| abstract_inverted_index.realised. | 90 |
| abstract_inverted_index.rebalance | 289 |
| abstract_inverted_index.resolving | 256 |
| abstract_inverted_index.species). | 235 |
| abstract_inverted_index.struggles | 61 |
| abstract_inverted_index.synthetic | 122, 155, 293, 311 |
| abstract_inverted_index.therefore | 144 |
| abstract_inverted_index.variation | 203 |
| abstract_inverted_index.Ecologists | 316 |
| abstract_inverted_index.Therefore, | 23 |
| abstract_inverted_index.challenge. | 101 |
| abstract_inverted_index.challenges | 335 |
| abstract_inverted_index.generalise | 148, 245 |
| abstract_inverted_index.generation | 153 |
| abstract_inverted_index.locations. | 151, 249 |
| abstract_inverted_index.monitoring | 38, 87 |
| abstract_inverted_index.solutions, | 25 |
| abstract_inverted_index.backgrounds | 118, 142 |
| abstract_inverted_index.identities. | 58 |
| abstract_inverted_index.monitoring. | 6 |
| abstract_inverted_index.Copy‐paste | 102, 236, 285 |
| abstract_inverted_index.augmentation | 95, 103, 162, 183, 223, 237, 286, 306, 323 |
| abstract_inverted_index.biodiversity | 5, 11, 37, 86, 177, 314 |
| abstract_inverted_index.conservation | 2 |
| abstract_inverted_index.copy‐paste | 182, 222 |
| abstract_inverted_index.improvement, | 205 |
| abstract_inverted_index.increasingly | 51 |
| abstract_inverted_index.distributions | 275 |
| abstract_inverted_index.long‐tailed | 260 |
| abstract_inverted_index.technological | 24 |
| abstract_inverted_index.Theoretically, | 134 |
| abstract_inverted_index.generalisation | 100 |
| abstract_inverted_index.identification | 338 |
| abstract_inverted_index.‘segments’ | 108 |
| abstract_inverted_index.species‐level | 202 |
| abstract_inverted_index.conservationists | 318 |
| abstract_inverted_index.transformations, | 328 |
| abstract_inverted_index.underrepresented | 296 |
| abstract_inverted_index.‘copy‐paste’ | 94 |
| abstract_inverted_index.(‘generalisation’). | 76 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5051130262 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I23923803 |
| citation_normalized_percentile |