Coresets for Clustering in Excluded-minor Graphs and Beyond Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2004.07718
Coresets are modern data-reduction tools that are widely used in data analysis to improve efficiency in terms of running time, space and communication complexity. Our main result is a fast algorithm to construct a small coreset for k-Median in (the shortest-path metric of) an excluded-minor graph. Specifically, we give the first coreset of size that depends only on $k$, $ε$ and the excluded-minor size, and our running time is quasi-linear (in the size of the input graph). The main innovation in our new algorithm is that is iterative; it first reduces the $n$ input points to roughly $O(\log n)$ reweighted points, then to $O(\log\log n)$, and so forth until the size is independent of $n$. Each step in this iterative size reduction is based on the importance sampling framework of Feldman and Langberg (STOC 2011), with a crucial adaptation that reduces the number of \emph{distinct points}, by employing a terminal embedding (where low distortion is guaranteed only for the distance from every terminal to all other points). Our terminal embedding is technically involved and relies on shortest-path separators, a standard tool in planar and excluded-minor graphs. Furthermore, our new algorithm is applicable also in Euclidean metrics, by simply using a recent terminal embedding result of Narayanan and Nelson, (STOC 2019), which extends the Johnson-Lindenstrauss Lemma. We thus obtain an efficient coreset construction in high-dimensional Euclidean spaces, thereby matching and simplifying state-of-the-art results (Sohler and Woodruff, FOCS 2018; Huang and Vishnoi, STOC 2020). In addition, we also employ terminal embedding with additive distortion to obtain small coresets in graphs with bounded highway dimension, and use applications of our coresets to obtain improved approximation schemes, e.g., an improved PTAS for planar k-Median via a new centroid set.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2004.07718
- https://arxiv.org/pdf/2004.07718
- OA Status
- green
- Cited By
- 3
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3017295214
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3017295214Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2004.07718Digital Object Identifier
- Title
-
Coresets for Clustering in Excluded-minor Graphs and BeyondWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-16Full publication date if available
- Authors
-
Vladimir Braverman, Shaofeng H.-C. Jiang, Robert Krauthgamer, Xuan WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2004.07718Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2004.07718Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2004.07718Direct OA link when available
- Concepts
-
Combinatorics, Mathematics, Embedding, Metric space, Minor (academic), Binary logarithm, Discrete mathematics, Euclidean geometry, Matching (statistics), Graph, Shortest path problem, Time complexity, Algorithm, Computer science, Statistics, Law, Political science, Geometry, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3017295214 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2004.07718 |
| ids.doi | https://doi.org/10.48550/arxiv.2004.07718 |
| ids.mag | 3017295214 |
| ids.openalex | https://openalex.org/W3017295214 |
| fwci | |
| type | preprint |
| title | Coresets for Clustering in Excluded-minor Graphs and Beyond |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10720 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Complexity and Algorithms in Graphs |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.987500011920929 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C114614502 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6531577706336975 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[0].display_name | Combinatorics |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5600383281707764 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C41608201 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5542153120040894 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[2].display_name | Embedding |
| concepts[3].id | https://openalex.org/C198043062 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5339468717575073 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q180953 |
| concepts[3].display_name | Metric space |
| concepts[4].id | https://openalex.org/C2779760435 |
| concepts[4].level | 2 |
| concepts[4].score | 0.515168309211731 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5396169 |
| concepts[4].display_name | Minor (academic) |
| concepts[5].id | https://openalex.org/C63553672 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48693931102752686 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q581168 |
| concepts[5].display_name | Binary logarithm |
| concepts[6].id | https://openalex.org/C118615104 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4504847526550293 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[6].display_name | Discrete mathematics |
| concepts[7].id | https://openalex.org/C129782007 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43758267164230347 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q162886 |
| concepts[7].display_name | Euclidean geometry |
| concepts[8].id | https://openalex.org/C165064840 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4284762740135193 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[8].display_name | Matching (statistics) |
| concepts[9].id | https://openalex.org/C132525143 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42465221881866455 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[9].display_name | Graph |
| concepts[10].id | https://openalex.org/C22590252 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4228819012641907 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1058754 |
| concepts[10].display_name | Shortest path problem |
| concepts[11].id | https://openalex.org/C311688 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42054101824760437 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2393193 |
| concepts[11].display_name | Time complexity |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.38414835929870605 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.34448546171188354 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11027008295059204 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C199539241 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[15].display_name | Law |
| concepts[16].id | https://openalex.org/C17744445 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[16].display_name | Political science |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C154945302 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[18].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/combinatorics |
| keywords[0].score | 0.6531577706336975 |
| keywords[0].display_name | Combinatorics |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.5600383281707764 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/embedding |
| keywords[2].score | 0.5542153120040894 |
| keywords[2].display_name | Embedding |
| keywords[3].id | https://openalex.org/keywords/metric-space |
| keywords[3].score | 0.5339468717575073 |
| keywords[3].display_name | Metric space |
| keywords[4].id | https://openalex.org/keywords/minor |
| keywords[4].score | 0.515168309211731 |
| keywords[4].display_name | Minor (academic) |
| keywords[5].id | https://openalex.org/keywords/binary-logarithm |
| keywords[5].score | 0.48693931102752686 |
| keywords[5].display_name | Binary logarithm |
| keywords[6].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[6].score | 0.4504847526550293 |
| keywords[6].display_name | Discrete mathematics |
| keywords[7].id | https://openalex.org/keywords/euclidean-geometry |
| keywords[7].score | 0.43758267164230347 |
| keywords[7].display_name | Euclidean geometry |
| keywords[8].id | https://openalex.org/keywords/matching |
| keywords[8].score | 0.4284762740135193 |
| keywords[8].display_name | Matching (statistics) |
| keywords[9].id | https://openalex.org/keywords/graph |
| keywords[9].score | 0.42465221881866455 |
| keywords[9].display_name | Graph |
| keywords[10].id | https://openalex.org/keywords/shortest-path-problem |
| keywords[10].score | 0.4228819012641907 |
| keywords[10].display_name | Shortest path problem |
| keywords[11].id | https://openalex.org/keywords/time-complexity |
| keywords[11].score | 0.42054101824760437 |
| keywords[11].display_name | Time complexity |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.38414835929870605 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.34448546171188354 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.11027008295059204 |
| keywords[14].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2004.07718 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2004.07718 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2004.07718 |
| locations[1].id | doi:10.48550/arxiv.2004.07718 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2004.07718 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053736722 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7709-8753 |
| authorships[0].author.display_name | Vladimir Braverman |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vladimir Braverman |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5063670809 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7972-827X |
| authorships[1].author.display_name | Shaofeng H.-C. Jiang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shaofeng H.-C. Jiang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5037378898 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-8154-3735 |
| authorships[2].author.display_name | Robert Krauthgamer |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Robert Krauthgamer |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101941389 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9069-5050 |
| authorships[3].author.display_name | Xuan Wu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xuan Wu |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2004.07718 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Coresets for Clustering in Excluded-minor Graphs and Beyond |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10720 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Complexity and Algorithms in Graphs |
| related_works | https://openalex.org/W4377371889, https://openalex.org/W1862126075, https://openalex.org/W2113623403, https://openalex.org/W2055932080, https://openalex.org/W4389362338, https://openalex.org/W1968512104, https://openalex.org/W2565109825, https://openalex.org/W78560857, https://openalex.org/W4389820491, https://openalex.org/W2521054645 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2004.07718 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2004.07718 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2004.07718 |
| primary_location.id | pmh:oai:arXiv.org:2004.07718 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2004.07718 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2004.07718 |
| publication_date | 2020-04-16 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2889438244, https://openalex.org/W2096848102, https://openalex.org/W2951931394, https://openalex.org/W1965814422, https://openalex.org/W3036859713, https://openalex.org/W2962950822, https://openalex.org/W2096725637, https://openalex.org/W581283990, https://openalex.org/W2266863926, https://openalex.org/W2997562718, https://openalex.org/W2964077180, https://openalex.org/W2943587448, https://openalex.org/W2089784543, https://openalex.org/W2010480966, https://openalex.org/W1927951443, https://openalex.org/W2029538739, https://openalex.org/W2970410048, https://openalex.org/W2132987358, https://openalex.org/W2041172083, https://openalex.org/W2154648702, https://openalex.org/W2942858066, https://openalex.org/W1987047329, https://openalex.org/W2979473749, https://openalex.org/W2139841919, https://openalex.org/W1977541023, https://openalex.org/W2006514056, https://openalex.org/W2096304547, https://openalex.org/W2977841662, https://openalex.org/W2094048240, https://openalex.org/W2245191586, https://openalex.org/W1824518693, https://openalex.org/W2958944212, https://openalex.org/W174068279, https://openalex.org/W2150410057, https://openalex.org/W1978906111, https://openalex.org/W2096908304, https://openalex.org/W2559873021, https://openalex.org/W3000575602, https://openalex.org/W3035569828, https://openalex.org/W2133157266, https://openalex.org/W2962777529, https://openalex.org/W2965734314, https://openalex.org/W2888080453, https://openalex.org/W1981773323, https://openalex.org/W2461311369, https://openalex.org/W3035259505, https://openalex.org/W2058295780, https://openalex.org/W2601251344, https://openalex.org/W3002138439, https://openalex.org/W1998905999, https://openalex.org/W2964100282, https://openalex.org/W2127248062, https://openalex.org/W2962682232, https://openalex.org/W2045964207, https://openalex.org/W2962691590 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 28, 33, 136, 148, 178, 199, 281 |
| abstract_inverted_index.In | 242 |
| abstract_inverted_index.We | 215 |
| abstract_inverted_index.an | 43, 218, 274 |
| abstract_inverted_index.by | 146, 196 |
| abstract_inverted_index.in | 9, 15, 38, 80, 117, 181, 193, 222, 256 |
| abstract_inverted_index.is | 27, 68, 84, 86, 111, 122, 154, 170, 190 |
| abstract_inverted_index.it | 88 |
| abstract_inverted_index.of | 17, 52, 73, 113, 129, 143, 204, 265 |
| abstract_inverted_index.on | 57, 124, 175 |
| abstract_inverted_index.so | 106 |
| abstract_inverted_index.to | 12, 31, 95, 102, 163, 252, 268 |
| abstract_inverted_index.we | 47, 244 |
| abstract_inverted_index.$n$ | 92 |
| abstract_inverted_index.(in | 70 |
| abstract_inverted_index.Our | 24, 167 |
| abstract_inverted_index.The | 77 |
| abstract_inverted_index.all | 164 |
| abstract_inverted_index.and | 21, 60, 64, 105, 131, 173, 183, 206, 228, 233, 238, 262 |
| abstract_inverted_index.are | 1, 6 |
| abstract_inverted_index.for | 36, 157, 277 |
| abstract_inverted_index.low | 152 |
| abstract_inverted_index.n)$ | 98 |
| abstract_inverted_index.new | 82, 188, 282 |
| abstract_inverted_index.of) | 42 |
| abstract_inverted_index.our | 65, 81, 187, 266 |
| abstract_inverted_index.the | 49, 61, 71, 74, 91, 109, 125, 141, 158, 212 |
| abstract_inverted_index.use | 263 |
| abstract_inverted_index.via | 280 |
| abstract_inverted_index.$k$, | 58 |
| abstract_inverted_index.$n$. | 114 |
| abstract_inverted_index.$ε$ | 59 |
| abstract_inverted_index.(the | 39 |
| abstract_inverted_index.Each | 115 |
| abstract_inverted_index.FOCS | 235 |
| abstract_inverted_index.PTAS | 276 |
| abstract_inverted_index.STOC | 240 |
| abstract_inverted_index.also | 192, 245 |
| abstract_inverted_index.data | 10 |
| abstract_inverted_index.fast | 29 |
| abstract_inverted_index.from | 160 |
| abstract_inverted_index.give | 48 |
| abstract_inverted_index.main | 25, 78 |
| abstract_inverted_index.n)$, | 104 |
| abstract_inverted_index.only | 56, 156 |
| abstract_inverted_index.set. | 284 |
| abstract_inverted_index.size | 53, 72, 110, 120 |
| abstract_inverted_index.step | 116 |
| abstract_inverted_index.that | 5, 54, 85, 139 |
| abstract_inverted_index.then | 101 |
| abstract_inverted_index.this | 118 |
| abstract_inverted_index.thus | 216 |
| abstract_inverted_index.time | 67 |
| abstract_inverted_index.tool | 180 |
| abstract_inverted_index.used | 8 |
| abstract_inverted_index.with | 135, 249, 258 |
| abstract_inverted_index.(STOC | 133, 208 |
| abstract_inverted_index.2018; | 236 |
| abstract_inverted_index.Huang | 237 |
| abstract_inverted_index.based | 123 |
| abstract_inverted_index.e.g., | 273 |
| abstract_inverted_index.every | 161 |
| abstract_inverted_index.first | 50, 89 |
| abstract_inverted_index.forth | 107 |
| abstract_inverted_index.input | 75, 93 |
| abstract_inverted_index.other | 165 |
| abstract_inverted_index.size, | 63 |
| abstract_inverted_index.small | 34, 254 |
| abstract_inverted_index.space | 20 |
| abstract_inverted_index.terms | 16 |
| abstract_inverted_index.time, | 19 |
| abstract_inverted_index.tools | 4 |
| abstract_inverted_index.until | 108 |
| abstract_inverted_index.using | 198 |
| abstract_inverted_index.which | 210 |
| abstract_inverted_index.(where | 151 |
| abstract_inverted_index.2011), | 134 |
| abstract_inverted_index.2019), | 209 |
| abstract_inverted_index.2020). | 241 |
| abstract_inverted_index.Lemma. | 214 |
| abstract_inverted_index.employ | 246 |
| abstract_inverted_index.graph. | 45 |
| abstract_inverted_index.graphs | 257 |
| abstract_inverted_index.metric | 41 |
| abstract_inverted_index.modern | 2 |
| abstract_inverted_index.number | 142 |
| abstract_inverted_index.obtain | 217, 253, 269 |
| abstract_inverted_index.planar | 182, 278 |
| abstract_inverted_index.points | 94 |
| abstract_inverted_index.recent | 200 |
| abstract_inverted_index.relies | 174 |
| abstract_inverted_index.result | 26, 203 |
| abstract_inverted_index.simply | 197 |
| abstract_inverted_index.widely | 7 |
| abstract_inverted_index.$O(\log | 97 |
| abstract_inverted_index.(Sohler | 232 |
| abstract_inverted_index.Feldman | 130 |
| abstract_inverted_index.Nelson, | 207 |
| abstract_inverted_index.bounded | 259 |
| abstract_inverted_index.coreset | 35, 51, 220 |
| abstract_inverted_index.crucial | 137 |
| abstract_inverted_index.depends | 55 |
| abstract_inverted_index.extends | 211 |
| abstract_inverted_index.graph). | 76 |
| abstract_inverted_index.graphs. | 185 |
| abstract_inverted_index.highway | 260 |
| abstract_inverted_index.improve | 13 |
| abstract_inverted_index.points, | 100 |
| abstract_inverted_index.reduces | 90, 140 |
| abstract_inverted_index.results | 231 |
| abstract_inverted_index.roughly | 96 |
| abstract_inverted_index.running | 18, 66 |
| abstract_inverted_index.spaces, | 225 |
| abstract_inverted_index.thereby | 226 |
| abstract_inverted_index.Coresets | 0 |
| abstract_inverted_index.Langberg | 132 |
| abstract_inverted_index.Vishnoi, | 239 |
| abstract_inverted_index.additive | 250 |
| abstract_inverted_index.analysis | 11 |
| abstract_inverted_index.centroid | 283 |
| abstract_inverted_index.coresets | 255, 267 |
| abstract_inverted_index.distance | 159 |
| abstract_inverted_index.improved | 270, 275 |
| abstract_inverted_index.involved | 172 |
| abstract_inverted_index.k-Median | 37, 279 |
| abstract_inverted_index.matching | 227 |
| abstract_inverted_index.metrics, | 195 |
| abstract_inverted_index.points). | 166 |
| abstract_inverted_index.points}, | 145 |
| abstract_inverted_index.sampling | 127 |
| abstract_inverted_index.schemes, | 272 |
| abstract_inverted_index.standard | 179 |
| abstract_inverted_index.terminal | 149, 162, 168, 201, 247 |
| abstract_inverted_index.Euclidean | 194, 224 |
| abstract_inverted_index.Narayanan | 205 |
| abstract_inverted_index.Woodruff, | 234 |
| abstract_inverted_index.addition, | 243 |
| abstract_inverted_index.algorithm | 30, 83, 189 |
| abstract_inverted_index.construct | 32 |
| abstract_inverted_index.efficient | 219 |
| abstract_inverted_index.embedding | 150, 169, 202, 248 |
| abstract_inverted_index.employing | 147 |
| abstract_inverted_index.framework | 128 |
| abstract_inverted_index.iterative | 119 |
| abstract_inverted_index.reduction | 121 |
| abstract_inverted_index.adaptation | 138 |
| abstract_inverted_index.applicable | 191 |
| abstract_inverted_index.dimension, | 261 |
| abstract_inverted_index.distortion | 153, 251 |
| abstract_inverted_index.efficiency | 14 |
| abstract_inverted_index.guaranteed | 155 |
| abstract_inverted_index.importance | 126 |
| abstract_inverted_index.innovation | 79 |
| abstract_inverted_index.iterative; | 87 |
| abstract_inverted_index.reweighted | 99 |
| abstract_inverted_index.$O(\log\log | 103 |
| abstract_inverted_index.complexity. | 23 |
| abstract_inverted_index.independent | 112 |
| abstract_inverted_index.separators, | 177 |
| abstract_inverted_index.simplifying | 229 |
| abstract_inverted_index.technically | 171 |
| abstract_inverted_index.Furthermore, | 186 |
| abstract_inverted_index.applications | 264 |
| abstract_inverted_index.construction | 221 |
| abstract_inverted_index.quasi-linear | 69 |
| abstract_inverted_index.Specifically, | 46 |
| abstract_inverted_index.approximation | 271 |
| abstract_inverted_index.communication | 22 |
| abstract_inverted_index.shortest-path | 40, 176 |
| abstract_inverted_index.\emph{distinct | 144 |
| abstract_inverted_index.data-reduction | 3 |
| abstract_inverted_index.excluded-minor | 44, 62, 184 |
| abstract_inverted_index.high-dimensional | 223 |
| abstract_inverted_index.state-of-the-art | 230 |
| abstract_inverted_index.Johnson-Lindenstrauss | 213 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |