Coresets for Clustering with Fairness Constraints Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1906.08484
In a recent work, [19] studied the following "fair" variants of classical clustering problems such as $k$-means and $k$-median: given a set of $n$ data points in $\mathbb{R}^d$ and a binary type associated to each data point, the goal is to cluster the points while ensuring that the proportion of each type in each cluster is roughly the same as its underlying proportion. Subsequent work has focused on either extending this setting to when each data point has multiple, non-disjoint sensitive types such as race and gender [6], or to address the problem that the clustering algorithms in the above work do not scale well. The main contribution of this paper is an approach to clustering with fairness constraints that involve multiple, non-disjoint types, that is also scalable. Our approach is based on novel constructions of coresets: for the $k$-median objective, we construct an $\varepsilon$-coreset of size $O(Γk^2 \varepsilon^{-d})$ where $Γ$ is the number of distinct collections of groups that a point may belong to, and for the $k$-means objective, we show how to construct an $\varepsilon$-coreset of size $O(Γk^3\varepsilon^{-d-1})$. The former result is the first known coreset construction for the fair clustering problem with the $k$-median objective, and the latter result removes the dependence on the size of the full dataset as in [39] and generalizes it to multiple, non-disjoint types. Plugging our coresets into existing algorithms for fair clustering such as [5] results in the fastest algorithms for several cases. Empirically, we assess our approach over the \textbf{Adult}, \textbf{Bank}, \textbf{Diabetes} and \textbf{Athlete} dataset, and show that the coreset sizes are much smaller than the full dataset. We also achieve a speed-up to recent fair clustering algorithms [5,6] by incorporating our coreset construction.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1906.08484
- https://arxiv.org/pdf/1906.08484
- OA Status
- green
- Cited By
- 21
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2951203646
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2951203646Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1906.08484Digital Object Identifier
- Title
-
Coresets for Clustering with Fairness ConstraintsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-06-20Full publication date if available
- Authors
-
Lingxiao Huang, Shaofeng H.-C. Jiang, Nisheeth K. VishnoiList of authors in order
- Landing page
-
https://arxiv.org/abs/1906.08484Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1906.08484Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1906.08484Direct OA link when available
- Concepts
-
Cluster analysis, Computer science, Business, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 5, 2022: 3, 2021: 6Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2951203646 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1906.08484 |
| ids.doi | https://doi.org/10.48550/arxiv.1906.08484 |
| ids.mag | 2951203646 |
| ids.openalex | https://openalex.org/W2951203646 |
| fwci | |
| type | preprint |
| title | Coresets for Clustering with Fairness Constraints |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9919999837875366 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| topics[1].id | https://openalex.org/T10637 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9869999885559082 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Clustering Algorithms Research |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9750000238418579 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6325916051864624 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.44288238883018494 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C144133560 |
| concepts[2].level | 0 |
| concepts[2].score | 0.32527709007263184 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[2].display_name | Business |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.22914233803749084 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.6325916051864624 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.44288238883018494 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/business |
| keywords[2].score | 0.32527709007263184 |
| keywords[2].display_name | Business |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.22914233803749084 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1906.08484 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1906.08484 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1906.08484 |
| locations[1].id | doi:10.48550/arxiv.1906.08484 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1906.08484 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101420651 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7512-142X |
| authorships[0].author.display_name | Lingxiao Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lingxiao Huang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5063670809 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7972-827X |
| authorships[1].author.display_name | Shaofeng H.-C. Jiang |
| authorships[1].countries | IL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I53964585 |
| authorships[1].affiliations[0].raw_affiliation_string | Weizmann institute of science; |
| authorships[1].institutions[0].id | https://openalex.org/I53964585 |
| authorships[1].institutions[0].ror | https://ror.org/0316ej306 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I53964585 |
| authorships[1].institutions[0].country_code | IL |
| authorships[1].institutions[0].display_name | Weizmann Institute of Science |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shaofeng H.-C. Jiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Weizmann institute of science; |
| authorships[2].author.id | https://openalex.org/A5063089732 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0255-1119 |
| authorships[2].author.display_name | Nisheeth K. Vishnoi |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[2].affiliations[0].raw_affiliation_string | Yale University |
| authorships[2].institutions[0].id | https://openalex.org/I32971472 |
| authorships[2].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Yale University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Nisheeth K. Vishnoi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Yale University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1906.08484 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Coresets for Clustering with Fairness Constraints |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9919999837875366 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 6 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1906.08484 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1906.08484 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1906.08484 |
| primary_location.id | pmh:oai:arXiv.org:1906.08484 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1906.08484 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1906.08484 |
| publication_date | 2019-06-20 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2229238337, https://openalex.org/W2807790463, https://openalex.org/W2188093611, https://openalex.org/W2148398661, https://openalex.org/W2964288644, https://openalex.org/W2134202849, https://openalex.org/W2944357355, https://openalex.org/W2963919086, https://openalex.org/W2061902728, https://openalex.org/W2978980326, https://openalex.org/W2559873021, https://openalex.org/W2380064501, https://openalex.org/W1978906111, https://openalex.org/W2964077180, https://openalex.org/W1981773323, https://openalex.org/W2947657760, https://openalex.org/W2150593711, https://openalex.org/W2912443269, https://openalex.org/W2536671271, https://openalex.org/W2963992001, https://openalex.org/W1981313592, https://openalex.org/W3137423196, https://openalex.org/W2929382047, https://openalex.org/W2963100392, https://openalex.org/W2956070670, https://openalex.org/W2963191884, https://openalex.org/W2908166511, https://openalex.org/W2947175317, https://openalex.org/W1648303880, https://openalex.org/W2220402431, https://openalex.org/W2199495299 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 1, 20, 29, 160, 271 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 268 |
| abstract_inverted_index.an | 112, 143, 175 |
| abstract_inverted_index.as | 15, 59, 83, 212, 232 |
| abstract_inverted_index.by | 279 |
| abstract_inverted_index.do | 101 |
| abstract_inverted_index.in | 26, 52, 97, 213, 235 |
| abstract_inverted_index.is | 39, 55, 111, 125, 130, 151, 183 |
| abstract_inverted_index.it | 217 |
| abstract_inverted_index.of | 10, 22, 49, 108, 135, 145, 154, 157, 177, 208 |
| abstract_inverted_index.on | 67, 132, 205 |
| abstract_inverted_index.or | 88 |
| abstract_inverted_index.to | 33, 40, 72, 89, 114, 173, 218, 273 |
| abstract_inverted_index.we | 141, 170, 243 |
| abstract_inverted_index.$n$ | 23 |
| abstract_inverted_index.Our | 128 |
| abstract_inverted_index.The | 105, 180 |
| abstract_inverted_index.[5] | 233 |
| abstract_inverted_index.and | 17, 28, 85, 165, 198, 215, 252, 255 |
| abstract_inverted_index.are | 261 |
| abstract_inverted_index.for | 137, 166, 189, 228, 239 |
| abstract_inverted_index.has | 65, 77 |
| abstract_inverted_index.how | 172 |
| abstract_inverted_index.its | 60 |
| abstract_inverted_index.may | 162 |
| abstract_inverted_index.not | 102 |
| abstract_inverted_index.our | 223, 245, 281 |
| abstract_inverted_index.set | 21 |
| abstract_inverted_index.the | 6, 37, 42, 47, 57, 91, 94, 98, 138, 152, 167, 184, 190, 195, 199, 203, 206, 209, 236, 248, 258, 265 |
| abstract_inverted_index.to, | 164 |
| abstract_inverted_index.$Γ$ | 150 |
| abstract_inverted_index.[19] | 4 |
| abstract_inverted_index.[39] | 214 |
| abstract_inverted_index.[6], | 87 |
| abstract_inverted_index.also | 126, 269 |
| abstract_inverted_index.data | 24, 35, 75 |
| abstract_inverted_index.each | 34, 50, 53, 74 |
| abstract_inverted_index.fair | 191, 229, 275 |
| abstract_inverted_index.full | 210, 266 |
| abstract_inverted_index.goal | 38 |
| abstract_inverted_index.into | 225 |
| abstract_inverted_index.main | 106 |
| abstract_inverted_index.much | 262 |
| abstract_inverted_index.over | 247 |
| abstract_inverted_index.race | 84 |
| abstract_inverted_index.same | 58 |
| abstract_inverted_index.show | 171, 256 |
| abstract_inverted_index.size | 146, 178, 207 |
| abstract_inverted_index.such | 14, 82, 231 |
| abstract_inverted_index.than | 264 |
| abstract_inverted_index.that | 46, 93, 119, 124, 159, 257 |
| abstract_inverted_index.this | 70, 109 |
| abstract_inverted_index.type | 31, 51 |
| abstract_inverted_index.when | 73 |
| abstract_inverted_index.with | 116, 194 |
| abstract_inverted_index.work | 64, 100 |
| abstract_inverted_index.[5,6] | 278 |
| abstract_inverted_index.above | 99 |
| abstract_inverted_index.based | 131 |
| abstract_inverted_index.first | 185 |
| abstract_inverted_index.given | 19 |
| abstract_inverted_index.known | 186 |
| abstract_inverted_index.novel | 133 |
| abstract_inverted_index.paper | 110 |
| abstract_inverted_index.point | 76, 161 |
| abstract_inverted_index.scale | 103 |
| abstract_inverted_index.sizes | 260 |
| abstract_inverted_index.types | 81 |
| abstract_inverted_index.well. | 104 |
| abstract_inverted_index.where | 149 |
| abstract_inverted_index.while | 44 |
| abstract_inverted_index.work, | 3 |
| abstract_inverted_index."fair" | 8 |
| abstract_inverted_index.assess | 244 |
| abstract_inverted_index.belong | 163 |
| abstract_inverted_index.binary | 30 |
| abstract_inverted_index.cases. | 241 |
| abstract_inverted_index.either | 68 |
| abstract_inverted_index.former | 181 |
| abstract_inverted_index.gender | 86 |
| abstract_inverted_index.groups | 158 |
| abstract_inverted_index.latter | 200 |
| abstract_inverted_index.number | 153 |
| abstract_inverted_index.point, | 36 |
| abstract_inverted_index.points | 25, 43 |
| abstract_inverted_index.recent | 2, 274 |
| abstract_inverted_index.result | 182, 201 |
| abstract_inverted_index.types, | 123 |
| abstract_inverted_index.types. | 221 |
| abstract_inverted_index.achieve | 270 |
| abstract_inverted_index.address | 90 |
| abstract_inverted_index.cluster | 41, 54 |
| abstract_inverted_index.coreset | 187, 259, 282 |
| abstract_inverted_index.dataset | 211 |
| abstract_inverted_index.fastest | 237 |
| abstract_inverted_index.focused | 66 |
| abstract_inverted_index.involve | 120 |
| abstract_inverted_index.problem | 92, 193 |
| abstract_inverted_index.removes | 202 |
| abstract_inverted_index.results | 234 |
| abstract_inverted_index.roughly | 56 |
| abstract_inverted_index.setting | 71 |
| abstract_inverted_index.several | 240 |
| abstract_inverted_index.smaller | 263 |
| abstract_inverted_index.studied | 5 |
| abstract_inverted_index.$O(Γk^2 | 147 |
| abstract_inverted_index.Plugging | 222 |
| abstract_inverted_index.approach | 113, 129, 246 |
| abstract_inverted_index.coresets | 224 |
| abstract_inverted_index.dataset, | 254 |
| abstract_inverted_index.dataset. | 267 |
| abstract_inverted_index.distinct | 155 |
| abstract_inverted_index.ensuring | 45 |
| abstract_inverted_index.existing | 226 |
| abstract_inverted_index.fairness | 117 |
| abstract_inverted_index.problems | 13 |
| abstract_inverted_index.speed-up | 272 |
| abstract_inverted_index.variants | 9 |
| abstract_inverted_index.$k$-means | 16, 168 |
| abstract_inverted_index.classical | 11 |
| abstract_inverted_index.construct | 142, 174 |
| abstract_inverted_index.coresets: | 136 |
| abstract_inverted_index.extending | 69 |
| abstract_inverted_index.following | 7 |
| abstract_inverted_index.multiple, | 78, 121, 219 |
| abstract_inverted_index.scalable. | 127 |
| abstract_inverted_index.sensitive | 80 |
| abstract_inverted_index.$k$-median | 139, 196 |
| abstract_inverted_index.Subsequent | 63 |
| abstract_inverted_index.algorithms | 96, 227, 238, 277 |
| abstract_inverted_index.associated | 32 |
| abstract_inverted_index.clustering | 12, 95, 115, 192, 230, 276 |
| abstract_inverted_index.dependence | 204 |
| abstract_inverted_index.objective, | 140, 169, 197 |
| abstract_inverted_index.proportion | 48 |
| abstract_inverted_index.underlying | 61 |
| abstract_inverted_index.$k$-median: | 18 |
| abstract_inverted_index.collections | 156 |
| abstract_inverted_index.constraints | 118 |
| abstract_inverted_index.generalizes | 216 |
| abstract_inverted_index.proportion. | 62 |
| abstract_inverted_index.Empirically, | 242 |
| abstract_inverted_index.construction | 188 |
| abstract_inverted_index.contribution | 107 |
| abstract_inverted_index.non-disjoint | 79, 122, 220 |
| abstract_inverted_index.construction. | 283 |
| abstract_inverted_index.constructions | 134 |
| abstract_inverted_index.incorporating | 280 |
| abstract_inverted_index.$\mathbb{R}^d$ | 27 |
| abstract_inverted_index.\textbf{Bank}, | 250 |
| abstract_inverted_index.\textbf{Adult}, | 249 |
| abstract_inverted_index.\textbf{Athlete} | 253 |
| abstract_inverted_index.\textbf{Diabetes} | 251 |
| abstract_inverted_index.\varepsilon^{-d})$ | 148 |
| abstract_inverted_index.$\varepsilon$-coreset | 144, 176 |
| abstract_inverted_index.$O(Γk^3\varepsilon^{-d-1})$. | 179 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/5 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Gender equality |
| citation_normalized_percentile |