Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4230/lipics.icalp.2025.101
We devise ε-coresets for robust (k,z)-Clustering with m outliers through black-box reductions to vanilla clustering. Given an ε-coreset construction for vanilla clustering with size N, we construct coresets of size N⋅ polylog(kmε^{-1}) + O_z(min{kmε^{-1}, m ε^{-2z}log^z(kmε^{-1})}) for various metric spaces, where O_z hides 2^{O(zlog z)} factors. This increases the size of the vanilla coreset by a small multiplicative factor of polylog(kmε^{-1}), and the additive term is up to a (ε^{-1}log (km))^{O(z)} factor to the size of the optimal robust coreset. Plugging in recent vanilla coreset results of [Cohen-Addad, Saulpic and Schwiegelshohn, STOC'21; Cohen-Addad, Draganov, Russo, Saulpic and Schwiegelshohn, SODA'25], we obtain the first coresets for (k,z)-Clustering with m outliers with size near-linear in k while previous results have size at least Ω(k²) [Huang, Jiang, Lou and Wu, ICLR'23; Huang, Li, Lu and Wu, SODA'25]. Technically, we establish two conditions under which a vanilla coreset is as well a robust coreset. The first condition requires the dataset to satisfy special structures - it can be broken into "dense" parts with bounded diameter. We combine this with a new bounded-diameter decomposition that has only O_z(km ε^{-1}) non-dense points to obtain the O_z(km ε^{-1}) additive bound. Another sufficient condition requires the vanilla coreset to possess an extra size-preserving property. To utilize this condition, we further give a black-box reduction that turns a vanilla coreset to the one that satisfies the said size-preserving property, and this leads to the alternative O_z(mε^{-2z}log^{z}(kmε^{-1})) additive size bound. We also give low-space implementations of our reductions in the dynamic streaming setting. Combined with known streaming constructions for vanilla coresets [Braverman, Frahling, Lang, Sohler and Yang, ICML'17; Hu, Song, Yang and Zhong, arXiv'1802.00459], we obtain the first dynamic streaming algorithms for coresets for k-Median (and k-Means) with m outliers, using space Õ(k + m) ⋅ poly(dε^{-1}log Δ) for inputs on a discrete grid [Δ]^d.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.07669
- https://arxiv.org/pdf/2502.07669
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407425769
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407425769Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4230/lipics.icalp.2025.101Digital Object Identifier
- Title
-
Coresets for Robust Clustering via Black-Box Reductions to Vanilla CaseWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Shaofeng H.-C. Jiang, Jianing LouList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.07669Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.07669Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.07669Direct OA link when available
- Concepts
-
Cluster analysis, Black box, Computer science, Mathematics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407425769 |
|---|---|
| doi | https://doi.org/10.4230/lipics.icalp.2025.101 |
| ids.doi | https://doi.org/10.4230/lipics.icalp.2025.101 |
| ids.openalex | https://openalex.org/W4407425769 |
| fwci | 0.0 |
| type | preprint |
| title | Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9865999817848206 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| topics[1].id | https://openalex.org/T10637 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9797000288963318 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Clustering Algorithms Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6111021041870117 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C94966114 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5819505453109741 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q29256 |
| concepts[1].display_name | Black box |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.41891443729400635 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.348804771900177 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.32265520095825195 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.6111021041870117 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/black-box |
| keywords[1].score | 0.5819505453109741 |
| keywords[1].display_name | Black box |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.41891443729400635 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.348804771900177 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.32265520095825195 |
| keywords[4].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.07669 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.07669 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.07669 |
| locations[1].id | doi:10.48550/arxiv.2502.07669 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.07669 |
| locations[2].id | doi:10.4230/lipics.icalp.2025.101 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S7407052059 |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Dagstuhl Research Online Publication Server |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.4230/lipics.icalp.2025.101 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5063670809 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7972-827X |
| authorships[0].author.display_name | Shaofeng H.-C. Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiang, Shaofeng H. -C. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5087578619 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jianing Lou |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Lou, Jianing |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.07669 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-13T00:00:00 |
| display_name | Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9865999817848206 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.07669 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.07669 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.07669 |
| primary_location.id | pmh:oai:arXiv.org:2502.07669 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.07669 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.07669 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.+ | 32, 293 |
| abstract_inverted_index.- | 160 |
| abstract_inverted_index.a | 55, 68, 141, 147, 175, 213, 218, 301 |
| abstract_inverted_index.k | 113 |
| abstract_inverted_index.m | 7, 34, 107, 288 |
| abstract_inverted_index.Lu | 130 |
| abstract_inverted_index.N, | 24 |
| abstract_inverted_index.To | 206 |
| abstract_inverted_index.We | 0, 171, 240 |
| abstract_inverted_index.an | 16, 202 |
| abstract_inverted_index.as | 145 |
| abstract_inverted_index.at | 119 |
| abstract_inverted_index.be | 163 |
| abstract_inverted_index.by | 54 |
| abstract_inverted_index.in | 81, 112, 248 |
| abstract_inverted_index.is | 65, 144 |
| abstract_inverted_index.it | 161 |
| abstract_inverted_index.m) | 294 |
| abstract_inverted_index.of | 28, 50, 59, 75, 86, 245 |
| abstract_inverted_index.on | 300 |
| abstract_inverted_index.to | 12, 67, 72, 156, 186, 200, 221, 233 |
| abstract_inverted_index.up | 66 |
| abstract_inverted_index.we | 25, 99, 135, 210, 274 |
| abstract_inverted_index.Hu, | 268 |
| abstract_inverted_index.Li, | 129 |
| abstract_inverted_index.Lou | 124 |
| abstract_inverted_index.O_z | 41 |
| abstract_inverted_index.The | 150 |
| abstract_inverted_index.Wu, | 126, 132 |
| abstract_inverted_index.and | 61, 89, 96, 125, 131, 230, 265, 271 |
| abstract_inverted_index.can | 162 |
| abstract_inverted_index.for | 3, 19, 36, 104, 258, 281, 283, 298 |
| abstract_inverted_index.has | 180 |
| abstract_inverted_index.new | 176 |
| abstract_inverted_index.one | 223 |
| abstract_inverted_index.our | 246 |
| abstract_inverted_index.the | 48, 51, 62, 73, 76, 101, 154, 188, 197, 222, 226, 234, 249, 276 |
| abstract_inverted_index.two | 137 |
| abstract_inverted_index.z)} | 44 |
| abstract_inverted_index.Δ) | 297 |
| abstract_inverted_index.⋅ | 295 |
| abstract_inverted_index.(and | 285 |
| abstract_inverted_index.N⋅ | 30 |
| abstract_inverted_index.This | 46 |
| abstract_inverted_index.Yang | 270 |
| abstract_inverted_index.also | 241 |
| abstract_inverted_index.give | 212, 242 |
| abstract_inverted_index.grid | 303 |
| abstract_inverted_index.have | 117 |
| abstract_inverted_index.into | 165 |
| abstract_inverted_index.only | 181 |
| abstract_inverted_index.said | 227 |
| abstract_inverted_index.size | 23, 29, 49, 74, 110, 118, 238 |
| abstract_inverted_index.term | 64 |
| abstract_inverted_index.that | 179, 216, 224 |
| abstract_inverted_index.this | 173, 208, 231 |
| abstract_inverted_index.well | 146 |
| abstract_inverted_index.with | 6, 22, 106, 109, 168, 174, 254, 287 |
| abstract_inverted_index.Given | 15 |
| abstract_inverted_index.Lang, | 263 |
| abstract_inverted_index.Õ(k | 292 |
| abstract_inverted_index.Song, | 269 |
| abstract_inverted_index.Yang, | 266 |
| abstract_inverted_index.extra | 203 |
| abstract_inverted_index.first | 102, 151, 277 |
| abstract_inverted_index.hides | 42 |
| abstract_inverted_index.known | 255 |
| abstract_inverted_index.leads | 232 |
| abstract_inverted_index.least | 120 |
| abstract_inverted_index.parts | 167 |
| abstract_inverted_index.small | 56 |
| abstract_inverted_index.space | 291 |
| abstract_inverted_index.turns | 217 |
| abstract_inverted_index.under | 139 |
| abstract_inverted_index.using | 290 |
| abstract_inverted_index.where | 40 |
| abstract_inverted_index.which | 140 |
| abstract_inverted_index.while | 114 |
| abstract_inverted_index.Huang, | 128 |
| abstract_inverted_index.Jiang, | 123 |
| abstract_inverted_index.O_z(km | 182, 189 |
| abstract_inverted_index.Russo, | 94 |
| abstract_inverted_index.Sohler | 264 |
| abstract_inverted_index.Zhong, | 272 |
| abstract_inverted_index.bound. | 192, 239 |
| abstract_inverted_index.broken | 164 |
| abstract_inverted_index.devise | 1 |
| abstract_inverted_index.factor | 58, 71 |
| abstract_inverted_index.inputs | 299 |
| abstract_inverted_index.metric | 38 |
| abstract_inverted_index.obtain | 100, 187, 275 |
| abstract_inverted_index.points | 185 |
| abstract_inverted_index.recent | 82 |
| abstract_inverted_index.robust | 4, 78, 148 |
| abstract_inverted_index."dense" | 166 |
| abstract_inverted_index.Another | 193 |
| abstract_inverted_index.Saulpic | 88, 95 |
| abstract_inverted_index.[Huang, | 122 |
| abstract_inverted_index.[Δ]^d. | 304 |
| abstract_inverted_index.bounded | 169 |
| abstract_inverted_index.combine | 172 |
| abstract_inverted_index.coreset | 53, 84, 143, 199, 220 |
| abstract_inverted_index.dataset | 155 |
| abstract_inverted_index.dynamic | 250, 278 |
| abstract_inverted_index.further | 211 |
| abstract_inverted_index.optimal | 77 |
| abstract_inverted_index.possess | 201 |
| abstract_inverted_index.results | 85, 116 |
| abstract_inverted_index.satisfy | 157 |
| abstract_inverted_index.spaces, | 39 |
| abstract_inverted_index.special | 158 |
| abstract_inverted_index.through | 9 |
| abstract_inverted_index.utilize | 207 |
| abstract_inverted_index.vanilla | 13, 20, 52, 83, 142, 198, 219, 259 |
| abstract_inverted_index.various | 37 |
| abstract_inverted_index.Ω(k²) | 121 |
| abstract_inverted_index.Combined | 253 |
| abstract_inverted_index.ICLR'23; | 127 |
| abstract_inverted_index.ICML'17; | 267 |
| abstract_inverted_index.Plugging | 80 |
| abstract_inverted_index.STOC'21; | 91 |
| abstract_inverted_index.additive | 63, 191, 237 |
| abstract_inverted_index.coreset. | 79, 149 |
| abstract_inverted_index.coresets | 27, 103, 260, 282 |
| abstract_inverted_index.discrete | 302 |
| abstract_inverted_index.factors. | 45 |
| abstract_inverted_index.k-Means) | 286 |
| abstract_inverted_index.k-Median | 284 |
| abstract_inverted_index.outliers | 8, 108 |
| abstract_inverted_index.previous | 115 |
| abstract_inverted_index.requires | 153, 196 |
| abstract_inverted_index.setting. | 252 |
| abstract_inverted_index.ε^{-1}) | 183, 190 |
| abstract_inverted_index.2^{O(zlog | 43 |
| abstract_inverted_index.Draganov, | 93 |
| abstract_inverted_index.Frahling, | 262 |
| abstract_inverted_index.SODA'25], | 98 |
| abstract_inverted_index.SODA'25]. | 133 |
| abstract_inverted_index.black-box | 10, 214 |
| abstract_inverted_index.condition | 152, 195 |
| abstract_inverted_index.construct | 26 |
| abstract_inverted_index.diameter. | 170 |
| abstract_inverted_index.establish | 136 |
| abstract_inverted_index.increases | 47 |
| abstract_inverted_index.low-space | 243 |
| abstract_inverted_index.non-dense | 184 |
| abstract_inverted_index.outliers, | 289 |
| abstract_inverted_index.property, | 229 |
| abstract_inverted_index.property. | 205 |
| abstract_inverted_index.reduction | 215 |
| abstract_inverted_index.satisfies | 225 |
| abstract_inverted_index.streaming | 251, 256, 279 |
| abstract_inverted_index.algorithms | 280 |
| abstract_inverted_index.clustering | 21 |
| abstract_inverted_index.condition, | 209 |
| abstract_inverted_index.conditions | 138 |
| abstract_inverted_index.reductions | 11, 247 |
| abstract_inverted_index.structures | 159 |
| abstract_inverted_index.sufficient | 194 |
| abstract_inverted_index.ε-coreset | 17 |
| abstract_inverted_index.(ε^{-1}log | 69 |
| abstract_inverted_index.[Braverman, | 261 |
| abstract_inverted_index.alternative | 235 |
| abstract_inverted_index.clustering. | 14 |
| abstract_inverted_index.near-linear | 111 |
| abstract_inverted_index.ε-coresets | 2 |
| abstract_inverted_index.(km))^{O(z)} | 70 |
| abstract_inverted_index.Cohen-Addad, | 92 |
| abstract_inverted_index.Technically, | 134 |
| abstract_inverted_index.construction | 18 |
| abstract_inverted_index.[Cohen-Addad, | 87 |
| abstract_inverted_index.constructions | 257 |
| abstract_inverted_index.decomposition | 178 |
| abstract_inverted_index.multiplicative | 57 |
| abstract_inverted_index.Schwiegelshohn, | 90, 97 |
| abstract_inverted_index.implementations | 244 |
| abstract_inverted_index.size-preserving | 204, 228 |
| abstract_inverted_index.(k,z)-Clustering | 5, 105 |
| abstract_inverted_index.bounded-diameter | 177 |
| abstract_inverted_index.poly(dε^{-1}log | 296 |
| abstract_inverted_index.O_z(min{kmε^{-1}, | 33 |
| abstract_inverted_index.arXiv'1802.00459], | 273 |
| abstract_inverted_index.polylog(kmε^{-1}) | 31 |
| abstract_inverted_index.polylog(kmε^{-1}), | 60 |
| abstract_inverted_index.ε^{-2z}log^z(kmε^{-1})}) | 35 |
| abstract_inverted_index.O_z(mε^{-2z}log^{z}(kmε^{-1})) | 236 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.03315568 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |