Corrigendum: Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training Article Swipe
Nicolas Ivanov
,
Tom Chau
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3389/fncom.2023.1286681
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3389/fncom.2023.1286681
[This corrects the article DOI: 10.3389/fncom.2023.1108889.].
Related Topics
Concepts
Metadata
- Type
- erratum
- Language
- en
- Landing Page
- https://doi.org/10.3389/fncom.2023.1286681
- https://www.frontiersin.org/articles/10.3389/fncom.2023.1286681/pdf?isPublishedV2=False
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388797179
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388797179Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fncom.2023.1286681Digital Object Identifier
- Title
-
Corrigendum: Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user trainingWork title
- Type
-
erratumOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-17Full publication date if available
- Authors
-
Nicolas Ivanov, Tom ChauList of authors in order
- Landing page
-
https://doi.org/10.3389/fncom.2023.1286681Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fncom.2023.1286681/pdf?isPublishedV2=FalseDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fncom.2023.1286681/pdf?isPublishedV2=FalseDirect OA link when available
- Concepts
-
Measure (data warehouse), Interface (matter), Computer science, Riemannian geometry, Training (meteorology), Human–computer interaction, User interface, Geometry, Mathematics, Data mining, Physics, Operating system, Bubble, Meteorology, Maximum bubble pressure methodTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388797179 |
|---|---|
| doi | https://doi.org/10.3389/fncom.2023.1286681 |
| ids.doi | https://doi.org/10.3389/fncom.2023.1286681 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38045092 |
| ids.openalex | https://openalex.org/W4388797179 |
| fwci | |
| type | erratum |
| title | Corrigendum: Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training |
| biblio.issue | |
| biblio.volume | 17 |
| biblio.last_page | 1286681 |
| biblio.first_page | 1286681 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9817000031471252 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10241 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9606999754905701 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Functional Brain Connectivity Studies |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C2780009758 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7566884756088257 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[0].display_name | Measure (data warehouse) |
| concepts[1].id | https://openalex.org/C113843644 |
| concepts[1].level | 4 |
| concepts[1].score | 0.5798853635787964 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q901882 |
| concepts[1].display_name | Interface (matter) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5723621845245361 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C181104567 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5516241788864136 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q761383 |
| concepts[3].display_name | Riemannian geometry |
| concepts[4].id | https://openalex.org/C2777211547 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4836488962173462 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[4].display_name | Training (meteorology) |
| concepts[5].id | https://openalex.org/C107457646 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4685313105583191 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[5].display_name | Human–computer interaction |
| concepts[6].id | https://openalex.org/C89505385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4533287286758423 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q47146 |
| concepts[6].display_name | User interface |
| concepts[7].id | https://openalex.org/C2524010 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3329893946647644 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[7].display_name | Geometry |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2093072235584259 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.14993155002593994 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13386470079421997 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.08083486557006836 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C157915830 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2928001 |
| concepts[12].display_name | Bubble |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C129307140 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q6795880 |
| concepts[14].display_name | Maximum bubble pressure method |
| keywords[0].id | https://openalex.org/keywords/measure |
| keywords[0].score | 0.7566884756088257 |
| keywords[0].display_name | Measure (data warehouse) |
| keywords[1].id | https://openalex.org/keywords/interface |
| keywords[1].score | 0.5798853635787964 |
| keywords[1].display_name | Interface (matter) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5723621845245361 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/riemannian-geometry |
| keywords[3].score | 0.5516241788864136 |
| keywords[3].display_name | Riemannian geometry |
| keywords[4].id | https://openalex.org/keywords/training |
| keywords[4].score | 0.4836488962173462 |
| keywords[4].display_name | Training (meteorology) |
| keywords[5].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[5].score | 0.4685313105583191 |
| keywords[5].display_name | Human–computer interaction |
| keywords[6].id | https://openalex.org/keywords/user-interface |
| keywords[6].score | 0.4533287286758423 |
| keywords[6].display_name | User interface |
| keywords[7].id | https://openalex.org/keywords/geometry |
| keywords[7].score | 0.3329893946647644 |
| keywords[7].display_name | Geometry |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.2093072235584259 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.14993155002593994 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.13386470079421997 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/operating-system |
| keywords[11].score | 0.08083486557006836 |
| keywords[11].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.3389/fncom.2023.1286681 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S19778766 |
| locations[0].source.issn | 1662-5188 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1662-5188 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Computational Neuroscience |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fncom.2023.1286681/pdf?isPublishedV2=False |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Computational Neuroscience |
| locations[0].landing_page_url | https://doi.org/10.3389/fncom.2023.1286681 |
| locations[1].id | pmid:38045092 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in computational neuroscience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38045092 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10691671 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10691671/pdf/fncom-17-1286681.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Front Comput Neurosci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10691671 |
| locations[3].id | pmh:oai:doaj.org/article:259213b8e8f24c839cf09a9ccdbf709c |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Frontiers in Computational Neuroscience, Vol 17 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/259213b8e8f24c839cf09a9ccdbf709c |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5089907633 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3974-4587 |
| authorships[0].author.display_name | Nicolas Ivanov |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2801420703 |
| authorships[0].affiliations[0].raw_affiliation_string | PRISM Lab, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I185261750 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I2801420703 |
| authorships[0].institutions[0].ror | https://ror.org/03qea8398 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I2801420703 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Holland Bloorview Kids Rehabilitation Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I185261750 |
| authorships[0].institutions[1].ror | https://ror.org/03dbr7087 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I185261750 |
| authorships[0].institutions[1].country_code | CA |
| authorships[0].institutions[1].display_name | University of Toronto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nicolas Ivanov |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada, PRISM Lab, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada |
| authorships[1].author.id | https://openalex.org/A5084071828 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7486-0316 |
| authorships[1].author.display_name | Tom Chau |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2801420703 |
| authorships[1].affiliations[0].raw_affiliation_string | PRISM Lab, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I185261750 |
| authorships[1].affiliations[1].raw_affiliation_string | Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I2801420703 |
| authorships[1].institutions[0].ror | https://ror.org/03qea8398 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I2801420703 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | Holland Bloorview Kids Rehabilitation Hospital |
| authorships[1].institutions[1].id | https://openalex.org/I185261750 |
| authorships[1].institutions[1].ror | https://ror.org/03dbr7087 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I185261750 |
| authorships[1].institutions[1].country_code | CA |
| authorships[1].institutions[1].display_name | University of Toronto |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Tom Chau |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada, PRISM Lab, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fncom.2023.1286681/pdf?isPublishedV2=False |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Corrigendum: Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9817000031471252 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W230091440, https://openalex.org/W2233261550, https://openalex.org/W2810751659, https://openalex.org/W258997015, https://openalex.org/W4255837520, https://openalex.org/W2997094352, https://openalex.org/W3216976533, https://openalex.org/W100620283, https://openalex.org/W1649706580, https://openalex.org/W3195608031 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fncom.2023.1286681 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S19778766 |
| best_oa_location.source.issn | 1662-5188 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1662-5188 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Computational Neuroscience |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fncom.2023.1286681/pdf?isPublishedV2=False |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Computational Neuroscience |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fncom.2023.1286681 |
| primary_location.id | doi:10.3389/fncom.2023.1286681 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S19778766 |
| primary_location.source.issn | 1662-5188 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1662-5188 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Computational Neuroscience |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fncom.2023.1286681/pdf?isPublishedV2=False |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Computational Neuroscience |
| primary_location.landing_page_url | https://doi.org/10.3389/fncom.2023.1286681 |
| publication_date | 2023-11-17 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.the | 2 |
| abstract_inverted_index.DOI: | 4 |
| abstract_inverted_index.[This | 0 |
| abstract_inverted_index.article | 3 |
| abstract_inverted_index.corrects | 1 |
| abstract_inverted_index.10.3389/fncom.2023.1108889.]. | 5 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5084071828 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I185261750, https://openalex.org/I2801420703 |
| citation_normalized_percentile.value | 0.2089312 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |