Costal Cartilage Segmentation with Topology Guided Deformable Mamba: Method and Benchmark Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.07444
Costal cartilage segmentation is crucial to various medical applications, necessitating precise and reliable techniques due to its complex anatomy and the importance of accurate diagnosis and surgical planning. We propose a novel deep learning-based approach called topology-guided deformable Mamba (TGDM) for costal cartilage segmentation. The TGDM is tailored to capture the intricate long-range costal cartilage relationships. Our method leverages a deformable model that integrates topological priors to enhance the adaptability and accuracy of the segmentation process. Furthermore, we developed a comprehensive benchmark that contains 165 cases for costal cartilage segmentation. This benchmark sets a new standard for evaluating costal cartilage segmentation techniques and provides a valuable resource for future research. Extensive experiments conducted on both in-domain benchmarks and out-of domain test sets demonstrate the superiority of our approach over existing methods, showing significant improvements in segmentation precision and robustness.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.07444
- https://arxiv.org/pdf/2408.07444
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402560455
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402560455Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.07444Digital Object Identifier
- Title
-
Costal Cartilage Segmentation with Topology Guided Deformable Mamba: Method and BenchmarkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-14Full publication date if available
- Authors
-
Senmao Wang, Haifan Gong, Runmeng Cui, Boyao Wan, Yicheng Liu, Zhonglin Hu, Haiqing Yang, Jingyang Zhou, Bo Pan, Lin Lin, Haiyue JiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.07444Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.07444Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.07444Direct OA link when available
- Concepts
-
Benchmark (surveying), Segmentation, Computer science, Topology (electrical circuits), Artificial intelligence, Mathematics, Geography, Cartography, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402560455 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.07444 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.07444 |
| ids.openalex | https://openalex.org/W4402560455 |
| fwci | |
| type | preprint |
| title | Costal Cartilage Segmentation with Topology Guided Deformable Mamba: Method and Benchmark |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11787 |
| topics[0].field.id | https://openalex.org/fields/35 |
| topics[0].field.display_name | Dentistry |
| topics[0].score | 0.9546999931335449 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3504 |
| topics[0].subfield.display_name | Oral Surgery |
| topics[0].display_name | Oral and Maxillofacial Pathology |
| topics[1].id | https://openalex.org/T11812 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.948199987411499 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2746 |
| topics[1].subfield.display_name | Surgery |
| topics[1].display_name | Nasal Surgery and Airway Studies |
| topics[2].id | https://openalex.org/T10984 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9348999857902527 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2733 |
| topics[2].subfield.display_name | Otorhinolaryngology |
| topics[2].display_name | Sinusitis and nasal conditions |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7532610893249512 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6418300271034241 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5280134081840515 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C184720557 |
| concepts[3].level | 2 |
| concepts[3].score | 0.513906717300415 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7825049 |
| concepts[3].display_name | Topology (electrical circuits) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3554569482803345 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3269180655479431 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.24815553426742554 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C58640448 |
| concepts[7].level | 1 |
| concepts[7].score | 0.17784586548805237 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[7].display_name | Cartography |
| concepts[8].id | https://openalex.org/C114614502 |
| concepts[8].level | 1 |
| concepts[8].score | 0.17348599433898926 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[8].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.7532610893249512 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6418300271034241 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5280134081840515 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/topology |
| keywords[3].score | 0.513906717300415 |
| keywords[3].display_name | Topology (electrical circuits) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3554569482803345 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.3269180655479431 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.24815553426742554 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/cartography |
| keywords[7].score | 0.17784586548805237 |
| keywords[7].display_name | Cartography |
| keywords[8].id | https://openalex.org/keywords/combinatorics |
| keywords[8].score | 0.17348599433898926 |
| keywords[8].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.07444 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.07444 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.07444 |
| locations[1].id | doi:10.48550/arxiv.2408.07444 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.07444 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103153661 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8022-1062 |
| authorships[0].author.display_name | Senmao Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Senmao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075975483 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2749-6830 |
| authorships[1].author.display_name | Haifan Gong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gong, Haifan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5109782692 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-5493-949X |
| authorships[2].author.display_name | Runmeng Cui |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cui, Runmeng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5104225595 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-8514-7952 |
| authorships[3].author.display_name | Boyao Wan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wan, Boyao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5029184350 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3571-3839 |
| authorships[4].author.display_name | Yicheng Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Yicheng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5111356870 |
| authorships[5].author.orcid | https://orcid.org/0009-0007-7734-8071 |
| authorships[5].author.display_name | Zhonglin Hu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hu, Zhonglin |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5111919411 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Haiqing Yang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yang, Haiqing |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5025883737 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3511-1168 |
| authorships[7].author.display_name | Jingyang Zhou |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhou, Jingyang |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5053902177 |
| authorships[8].author.orcid | https://orcid.org/0009-0008-7410-5231 |
| authorships[8].author.display_name | Bo Pan |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Pan, Bo |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5108154381 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Lin Lin |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Lin, Lin |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5039967960 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-3948-372X |
| authorships[10].author.display_name | Haiyue Jiang |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Jiang, Haiyue |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.07444 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-09-18T00:00:00 |
| display_name | Costal Cartilage Segmentation with Topology Guided Deformable Mamba: Method and Benchmark |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11787 |
| primary_topic.field.id | https://openalex.org/fields/35 |
| primary_topic.field.display_name | Dentistry |
| primary_topic.score | 0.9546999931335449 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3504 |
| primary_topic.subfield.display_name | Oral Surgery |
| primary_topic.display_name | Oral and Maxillofacial Pathology |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2378211422, https://openalex.org/W1979597421, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2007980826, https://openalex.org/W2130974462, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2028665553 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.07444 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.07444 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.07444 |
| primary_location.id | pmh:oai:arXiv.org:2408.07444 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.07444 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.07444 |
| publication_date | 2024-08-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 59, 79, 93, 104 |
| abstract_inverted_index.We | 28 |
| abstract_inverted_index.in | 134 |
| abstract_inverted_index.is | 3, 46 |
| abstract_inverted_index.of | 22, 72, 125 |
| abstract_inverted_index.on | 113 |
| abstract_inverted_index.to | 5, 15, 48, 66 |
| abstract_inverted_index.we | 77 |
| abstract_inverted_index.165 | 84 |
| abstract_inverted_index.Our | 56 |
| abstract_inverted_index.The | 44 |
| abstract_inverted_index.and | 11, 19, 25, 70, 102, 117, 137 |
| abstract_inverted_index.due | 14 |
| abstract_inverted_index.for | 40, 86, 96, 107 |
| abstract_inverted_index.its | 16 |
| abstract_inverted_index.new | 94 |
| abstract_inverted_index.our | 126 |
| abstract_inverted_index.the | 20, 50, 68, 73, 123 |
| abstract_inverted_index.TGDM | 45 |
| abstract_inverted_index.This | 90 |
| abstract_inverted_index.both | 114 |
| abstract_inverted_index.deep | 32 |
| abstract_inverted_index.over | 128 |
| abstract_inverted_index.sets | 92, 121 |
| abstract_inverted_index.test | 120 |
| abstract_inverted_index.that | 62, 82 |
| abstract_inverted_index.Mamba | 38 |
| abstract_inverted_index.cases | 85 |
| abstract_inverted_index.model | 61 |
| abstract_inverted_index.novel | 31 |
| abstract_inverted_index.(TGDM) | 39 |
| abstract_inverted_index.Costal | 0 |
| abstract_inverted_index.called | 35 |
| abstract_inverted_index.costal | 41, 53, 87, 98 |
| abstract_inverted_index.domain | 119 |
| abstract_inverted_index.future | 108 |
| abstract_inverted_index.method | 57 |
| abstract_inverted_index.out-of | 118 |
| abstract_inverted_index.priors | 65 |
| abstract_inverted_index.anatomy | 18 |
| abstract_inverted_index.capture | 49 |
| abstract_inverted_index.complex | 17 |
| abstract_inverted_index.crucial | 4 |
| abstract_inverted_index.enhance | 67 |
| abstract_inverted_index.medical | 7 |
| abstract_inverted_index.precise | 10 |
| abstract_inverted_index.propose | 29 |
| abstract_inverted_index.showing | 131 |
| abstract_inverted_index.various | 6 |
| abstract_inverted_index.accuracy | 71 |
| abstract_inverted_index.accurate | 23 |
| abstract_inverted_index.approach | 34, 127 |
| abstract_inverted_index.contains | 83 |
| abstract_inverted_index.existing | 129 |
| abstract_inverted_index.methods, | 130 |
| abstract_inverted_index.process. | 75 |
| abstract_inverted_index.provides | 103 |
| abstract_inverted_index.reliable | 12 |
| abstract_inverted_index.resource | 106 |
| abstract_inverted_index.standard | 95 |
| abstract_inverted_index.surgical | 26 |
| abstract_inverted_index.tailored | 47 |
| abstract_inverted_index.valuable | 105 |
| abstract_inverted_index.Extensive | 110 |
| abstract_inverted_index.benchmark | 81, 91 |
| abstract_inverted_index.cartilage | 1, 42, 54, 88, 99 |
| abstract_inverted_index.conducted | 112 |
| abstract_inverted_index.developed | 78 |
| abstract_inverted_index.diagnosis | 24 |
| abstract_inverted_index.in-domain | 115 |
| abstract_inverted_index.intricate | 51 |
| abstract_inverted_index.leverages | 58 |
| abstract_inverted_index.planning. | 27 |
| abstract_inverted_index.precision | 136 |
| abstract_inverted_index.research. | 109 |
| abstract_inverted_index.benchmarks | 116 |
| abstract_inverted_index.deformable | 37, 60 |
| abstract_inverted_index.evaluating | 97 |
| abstract_inverted_index.importance | 21 |
| abstract_inverted_index.integrates | 63 |
| abstract_inverted_index.long-range | 52 |
| abstract_inverted_index.techniques | 13, 101 |
| abstract_inverted_index.demonstrate | 122 |
| abstract_inverted_index.experiments | 111 |
| abstract_inverted_index.robustness. | 138 |
| abstract_inverted_index.significant | 132 |
| abstract_inverted_index.superiority | 124 |
| abstract_inverted_index.topological | 64 |
| abstract_inverted_index.Furthermore, | 76 |
| abstract_inverted_index.adaptability | 69 |
| abstract_inverted_index.improvements | 133 |
| abstract_inverted_index.segmentation | 2, 74, 100, 135 |
| abstract_inverted_index.applications, | 8 |
| abstract_inverted_index.comprehensive | 80 |
| abstract_inverted_index.necessitating | 9 |
| abstract_inverted_index.segmentation. | 43, 89 |
| abstract_inverted_index.learning-based | 33 |
| abstract_inverted_index.relationships. | 55 |
| abstract_inverted_index.topology-guided | 36 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile |