Counting the Number of Domatic Partition of a Graph Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.00103
A subset of vertices $S$ of a graph $G$ is a dominating set if every vertex in $V \setminus S$ has at least one neighbor in $S$. A domatic partition is a partition of the vertices of a graph $G$ into disjoint dominating sets. The domatic number $d(G)$ is the maximum size of a domatic partition. Suppose that $dp(G,i)$ is the number of distinct domatic partition of $G$ with cardinality $i$. In this paper, we consider the generating function of $dp(G,i)$, i.e., $DP(G,x)=\sum_{i=1}^{d(G)}dp(G,i)x^i$ which we call it the domatic partition polynomial. We explore the domatic polynomial for trees, providing a quadratic time algorithm for its computation based on weak 2-coloring numbers. Our results include specific findings for paths and certain graph products, demonstrating practical applications of our theoretical framework.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.00103
- https://arxiv.org/pdf/2407.00103
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400267064
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400267064Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.00103Digital Object Identifier
- Title
-
Counting the Number of Domatic Partition of a GraphWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-27Full publication date if available
- Authors
-
Saeid Alikhani, Davood Bakhshesh, Nima GhanbariList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.00103Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.00103Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.00103Direct OA link when available
- Concepts
-
Graph, Partition (number theory), Mathematics, Computer science, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400267064 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.00103 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.00103 |
| ids.openalex | https://openalex.org/W4400267064 |
| fwci | |
| type | preprint |
| title | Counting the Number of Domatic Partition of a Graph |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10374 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Graph Theory Research |
| topics[1].id | https://openalex.org/T12541 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9930999875068665 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Graph Labeling and Dimension Problems |
| topics[2].id | https://openalex.org/T11106 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9715999960899353 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Data Management and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C132525143 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5558388233184814 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[0].display_name | Graph |
| concepts[1].id | https://openalex.org/C42812 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4949600100517273 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[1].display_name | Partition (number theory) |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.44375061988830566 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.39378997683525085 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C114614502 |
| concepts[4].level | 1 |
| concepts[4].score | 0.35116177797317505 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[4].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/graph |
| keywords[0].score | 0.5558388233184814 |
| keywords[0].display_name | Graph |
| keywords[1].id | https://openalex.org/keywords/partition |
| keywords[1].score | 0.4949600100517273 |
| keywords[1].display_name | Partition (number theory) |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.44375061988830566 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.39378997683525085 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/combinatorics |
| keywords[4].score | 0.35116177797317505 |
| keywords[4].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.00103 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.00103 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.00103 |
| locations[1].id | doi:10.48550/arxiv.2407.00103 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.00103 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5029127053 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1801-203X |
| authorships[0].author.display_name | Saeid Alikhani |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alikhani, Saeid |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059391205 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8883-8312 |
| authorships[1].author.display_name | Davood Bakhshesh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bakhshesh, Davood |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5046055715 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5063-3461 |
| authorships[2].author.display_name | Nima Ghanbari |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ghanbari, Nima |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.00103 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Counting the Number of Domatic Partition of a Graph |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10374 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Graph Theory Research |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.00103 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.00103 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.00103 |
| primary_location.id | pmh:oai:arXiv.org:2407.00103 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.00103 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.00103 |
| publication_date | 2024-06-27 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0, 27 |
| abstract_inverted_index.a | 6, 10, 31, 37, 53, 99 |
| abstract_inverted_index.$V | 17 |
| abstract_inverted_index.In | 71 |
| abstract_inverted_index.S$ | 19 |
| abstract_inverted_index.We | 91 |
| abstract_inverted_index.at | 21 |
| abstract_inverted_index.if | 13 |
| abstract_inverted_index.in | 16, 25 |
| abstract_inverted_index.is | 9, 30, 48, 59 |
| abstract_inverted_index.it | 86 |
| abstract_inverted_index.of | 2, 5, 33, 36, 52, 62, 66, 79, 125 |
| abstract_inverted_index.on | 107 |
| abstract_inverted_index.we | 74, 84 |
| abstract_inverted_index.$G$ | 8, 39, 67 |
| abstract_inverted_index.$S$ | 4 |
| abstract_inverted_index.Our | 111 |
| abstract_inverted_index.The | 44 |
| abstract_inverted_index.and | 118 |
| abstract_inverted_index.for | 96, 103, 116 |
| abstract_inverted_index.has | 20 |
| abstract_inverted_index.its | 104 |
| abstract_inverted_index.one | 23 |
| abstract_inverted_index.our | 126 |
| abstract_inverted_index.set | 12 |
| abstract_inverted_index.the | 34, 49, 60, 76, 87, 93 |
| abstract_inverted_index.$S$. | 26 |
| abstract_inverted_index.$i$. | 70 |
| abstract_inverted_index.call | 85 |
| abstract_inverted_index.into | 40 |
| abstract_inverted_index.size | 51 |
| abstract_inverted_index.that | 57 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.time | 101 |
| abstract_inverted_index.weak | 108 |
| abstract_inverted_index.with | 68 |
| abstract_inverted_index.based | 106 |
| abstract_inverted_index.every | 14 |
| abstract_inverted_index.graph | 7, 38, 120 |
| abstract_inverted_index.i.e., | 81 |
| abstract_inverted_index.least | 22 |
| abstract_inverted_index.paths | 117 |
| abstract_inverted_index.sets. | 43 |
| abstract_inverted_index.which | 83 |
| abstract_inverted_index.$d(G)$ | 47 |
| abstract_inverted_index.number | 46, 61 |
| abstract_inverted_index.paper, | 73 |
| abstract_inverted_index.subset | 1 |
| abstract_inverted_index.trees, | 97 |
| abstract_inverted_index.vertex | 15 |
| abstract_inverted_index.Suppose | 56 |
| abstract_inverted_index.certain | 119 |
| abstract_inverted_index.domatic | 28, 45, 54, 64, 88, 94 |
| abstract_inverted_index.explore | 92 |
| abstract_inverted_index.include | 113 |
| abstract_inverted_index.maximum | 50 |
| abstract_inverted_index.results | 112 |
| abstract_inverted_index.consider | 75 |
| abstract_inverted_index.disjoint | 41 |
| abstract_inverted_index.distinct | 63 |
| abstract_inverted_index.findings | 115 |
| abstract_inverted_index.function | 78 |
| abstract_inverted_index.neighbor | 24 |
| abstract_inverted_index.numbers. | 110 |
| abstract_inverted_index.specific | 114 |
| abstract_inverted_index.vertices | 3, 35 |
| abstract_inverted_index.$dp(G,i)$ | 58 |
| abstract_inverted_index.\setminus | 18 |
| abstract_inverted_index.algorithm | 102 |
| abstract_inverted_index.partition | 29, 32, 65, 89 |
| abstract_inverted_index.practical | 123 |
| abstract_inverted_index.products, | 121 |
| abstract_inverted_index.providing | 98 |
| abstract_inverted_index.quadratic | 100 |
| abstract_inverted_index.$dp(G,i)$, | 80 |
| abstract_inverted_index.2-coloring | 109 |
| abstract_inverted_index.dominating | 11, 42 |
| abstract_inverted_index.framework. | 128 |
| abstract_inverted_index.generating | 77 |
| abstract_inverted_index.partition. | 55 |
| abstract_inverted_index.polynomial | 95 |
| abstract_inverted_index.cardinality | 69 |
| abstract_inverted_index.computation | 105 |
| abstract_inverted_index.polynomial. | 90 |
| abstract_inverted_index.theoretical | 127 |
| abstract_inverted_index.applications | 124 |
| abstract_inverted_index.demonstrating | 122 |
| abstract_inverted_index.$DP(G,x)=\sum_{i=1}^{d(G)}dp(G,i)x^i$ | 82 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |