Coupling Interpretable Feature Selection with Machine Learning for Evapotranspiration Gap Filling Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/w17050748
Evapotranspiration (ET) plays a pivotal role in linking the water and carbon cycles between the land and atmosphere, with latent heat flux (LE) representing the energy manifestation of ET. Due to adverse meteorological conditions, data quality filtering, and instrument malfunctions, LE measured by the eddy covariance (EC) is temporally discontinuous at the hourly and daily scales. Machine-learning (ML) models effectively capture the complex relationships between LE and its influencing factors, demonstrating superior performance in filling LE data gaps. However, the selection of features in ML models often relies on empirical knowledge, with identical features frequently used across stations, leading to reduced modeling accuracy. Therefore, this study proposes an LE gap-filling model (SHAP-AWF-BO-LightGBM) that combines the Shapley additive explanations adaptive weighted fusion method with the Bayesian optimization light gradient-boosting machine algorithm. This is tested using data from three stations in the Heihe River Basin, China, representing different plant functional types. For 30 min interval missing LE data, the RMSE ranges from 17.90 W/m2 to 20.17 W/m2, while the MAE ranges from 10.74 W/m2 to 14.04 W/m2. The SHAP-AWF method is used for feature selection. First, the importance of SHAP features from multiple ensemble-learning models is adaptively weighted as the basis for feature input into the BO-LightGBM algorithm, which enhances the interpretability and transparency of the model. Second, data redundancy and the cost of collecting other feature data during model training are reduced, improving model calculation efficiency (reducing the initial number of features of different stations from 42, 46, and 48 to 10, 15, and 8, respectively). Third, under the premise of ensuring accuracy as much as possible, the gap-filling ratio for missing LE data at different stations is improved, and the adaptability of using only automatic weather station observation is enhanced (the improvement range is between 7.46% and 11.67%). Simultaneously, the hyperparameters of the LightGBM algorithm are optimized using a Bayesian algorithm, further enhancing the accuracy of the model. This study provides a new approach and perspective to fill the missing LE in EC measurement.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/w17050748
- https://www.mdpi.com/2073-4441/17/5/748/pdf?version=1741083123
- OA Status
- gold
- Cited By
- 2
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408155487
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408155487Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/w17050748Digital Object Identifier
- Title
-
Coupling Interpretable Feature Selection with Machine Learning for Evapotranspiration Gap FillingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-04Full publication date if available
- Authors
-
Lizheng Wang, Lixin Dong, Qiutong ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/w17050748Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-4441/17/5/748/pdf?version=1741083123Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-4441/17/5/748/pdf?version=1741083123Direct OA link when available
- Concepts
-
Coupling (piping), Feature selection, Selection (genetic algorithm), Artificial intelligence, Feature (linguistics), Evapotranspiration, Computer science, Machine learning, Pattern recognition (psychology), Materials science, Biology, Ecology, Philosophy, Linguistics, MetallurgyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408155487 |
|---|---|
| doi | https://doi.org/10.3390/w17050748 |
| ids.doi | https://doi.org/10.3390/w17050748 |
| ids.openalex | https://openalex.org/W4408155487 |
| fwci | 6.23654349 |
| type | article |
| title | Coupling Interpretable Feature Selection with Machine Learning for Evapotranspiration Gap Filling |
| awards[0].id | https://openalex.org/G7458659033 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2023YFB3905801 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 5 |
| biblio.volume | 17 |
| biblio.last_page | 748 |
| biblio.first_page | 748 |
| topics[0].id | https://openalex.org/T10266 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Plant Water Relations and Carbon Dynamics |
| topics[1].id | https://openalex.org/T10330 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Hydrology and Watershed Management Studies |
| topics[2].id | https://openalex.org/T11186 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9882000088691711 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Hydrology and Drought Analysis |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C131584629 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7258908152580261 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4308705 |
| concepts[0].display_name | Coupling (piping) |
| concepts[1].id | https://openalex.org/C148483581 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6808773875236511 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[1].display_name | Feature selection |
| concepts[2].id | https://openalex.org/C81917197 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6205464005470276 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[2].display_name | Selection (genetic algorithm) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6101924180984497 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.604802668094635 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C176783924 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5505070686340332 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q828158 |
| concepts[5].display_name | Evapotranspiration |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.479358971118927 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4781990051269531 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.465002179145813 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C192562407 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2210419774055481 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[9].display_name | Materials science |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.11874711513519287 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C18903297 |
| concepts[11].level | 1 |
| concepts[11].score | 0.08978468179702759 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[11].display_name | Ecology |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.06681719422340393 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C191897082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[14].display_name | Metallurgy |
| keywords[0].id | https://openalex.org/keywords/coupling |
| keywords[0].score | 0.7258908152580261 |
| keywords[0].display_name | Coupling (piping) |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.6808773875236511 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/selection |
| keywords[2].score | 0.6205464005470276 |
| keywords[2].display_name | Selection (genetic algorithm) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6101924180984497 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.604802668094635 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/evapotranspiration |
| keywords[5].score | 0.5505070686340332 |
| keywords[5].display_name | Evapotranspiration |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.479358971118927 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4781990051269531 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.465002179145813 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/materials-science |
| keywords[9].score | 0.2210419774055481 |
| keywords[9].display_name | Materials science |
| keywords[10].id | https://openalex.org/keywords/biology |
| keywords[10].score | 0.11874711513519287 |
| keywords[10].display_name | Biology |
| keywords[11].id | https://openalex.org/keywords/ecology |
| keywords[11].score | 0.08978468179702759 |
| keywords[11].display_name | Ecology |
| keywords[12].id | https://openalex.org/keywords/philosophy |
| keywords[12].score | 0.06681719422340393 |
| keywords[12].display_name | Philosophy |
| language | en |
| locations[0].id | doi:10.3390/w17050748 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S134216166 |
| locations[0].source.issn | 2073-4441 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-4441 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Water |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-4441/17/5/748/pdf?version=1741083123 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Water |
| locations[0].landing_page_url | https://doi.org/10.3390/w17050748 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5074686205 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Lizheng Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25355098 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China |
| authorships[0].institutions[0].id | https://openalex.org/I25355098 |
| authorships[0].institutions[0].ror | https://ror.org/05mxya461 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25355098 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chang'an University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lizheng Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China |
| authorships[1].author.id | https://openalex.org/A5100718936 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7945-9073 |
| authorships[1].author.display_name | Lixin Dong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141301092 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China |
| authorships[1].institutions[0].id | https://openalex.org/I141301092 |
| authorships[1].institutions[0].ror | https://ror.org/00bx3rb98 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I141301092 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China Meteorological Administration |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lixin Dong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China |
| authorships[2].author.id | https://openalex.org/A5029572597 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-9002-2587 |
| authorships[2].author.display_name | Qiutong Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I25355098 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China |
| authorships[2].institutions[0].id | https://openalex.org/I25355098 |
| authorships[2].institutions[0].ror | https://ror.org/05mxya461 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I25355098 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chang'an University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Qiutong Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-4441/17/5/748/pdf?version=1741083123 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Coupling Interpretable Feature Selection with Machine Learning for Evapotranspiration Gap Filling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-19T19:40:27.379048 |
| primary_topic.id | https://openalex.org/T10266 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Plant Water Relations and Carbon Dynamics |
| related_works | https://openalex.org/W2102874016, https://openalex.org/W2352756686, https://openalex.org/W2354103845, https://openalex.org/W3689139, https://openalex.org/W2080467217, https://openalex.org/W2030038391, https://openalex.org/W2329093186, https://openalex.org/W2043190763, https://openalex.org/W4386564352, https://openalex.org/W2952668426 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/w17050748 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S134216166 |
| best_oa_location.source.issn | 2073-4441 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-4441 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Water |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-4441/17/5/748/pdf?version=1741083123 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Water |
| best_oa_location.landing_page_url | https://doi.org/10.3390/w17050748 |
| primary_location.id | doi:10.3390/w17050748 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S134216166 |
| primary_location.source.issn | 2073-4441 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-4441 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Water |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-4441/17/5/748/pdf?version=1741083123 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Water |
| primary_location.landing_page_url | https://doi.org/10.3390/w17050748 |
| publication_date | 2025-03-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3176956337, https://openalex.org/W2144630956, https://openalex.org/W2141748334, https://openalex.org/W2166186402, https://openalex.org/W3034517961, https://openalex.org/W3010342368, https://openalex.org/W4310204419, https://openalex.org/W4367693024, https://openalex.org/W2775688604, https://openalex.org/W2151478249, https://openalex.org/W2904321320, https://openalex.org/W2138083030, https://openalex.org/W2124437404, https://openalex.org/W2156748700, https://openalex.org/W4386073371, https://openalex.org/W3084021408, https://openalex.org/W4214602502, https://openalex.org/W4200527363, https://openalex.org/W4391403963, https://openalex.org/W4401538018, https://openalex.org/W3125357239, https://openalex.org/W4289236186, https://openalex.org/W2107009275, https://openalex.org/W2904909458, https://openalex.org/W4388585095, https://openalex.org/W2916756308, https://openalex.org/W3022626456, https://openalex.org/W2163606831, https://openalex.org/W2295598076, https://openalex.org/W6745609711, https://openalex.org/W6750729320, https://openalex.org/W4393866095, https://openalex.org/W4322806530, https://openalex.org/W1678356000, https://openalex.org/W2911964244, https://openalex.org/W2028070629, https://openalex.org/W3096207306, https://openalex.org/W4285082643, https://openalex.org/W4391848631, https://openalex.org/W4382366071, https://openalex.org/W2119895530, https://openalex.org/W2964022491, https://openalex.org/W2768348081 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 3, 308, 321 |
| abstract_inverted_index.30 | 150 |
| abstract_inverted_index.48 | 248 |
| abstract_inverted_index.8, | 253 |
| abstract_inverted_index.EC | 332 |
| abstract_inverted_index.LE | 40, 65, 75, 108, 154, 271, 330 |
| abstract_inverted_index.ML | 84 |
| abstract_inverted_index.an | 107 |
| abstract_inverted_index.as | 196, 262, 264 |
| abstract_inverted_index.at | 50, 273 |
| abstract_inverted_index.by | 42 |
| abstract_inverted_index.in | 6, 73, 83, 138, 331 |
| abstract_inverted_index.is | 47, 131, 178, 193, 276, 288, 293 |
| abstract_inverted_index.of | 27, 81, 186, 212, 221, 239, 241, 259, 281, 301, 315 |
| abstract_inverted_index.on | 88 |
| abstract_inverted_index.to | 30, 99, 162, 172, 249, 326 |
| abstract_inverted_index.10, | 250 |
| abstract_inverted_index.15, | 251 |
| abstract_inverted_index.42, | 245 |
| abstract_inverted_index.46, | 246 |
| abstract_inverted_index.Due | 29 |
| abstract_inverted_index.ET. | 28 |
| abstract_inverted_index.For | 149 |
| abstract_inverted_index.MAE | 167 |
| abstract_inverted_index.The | 175 |
| abstract_inverted_index.and | 10, 16, 37, 53, 66, 210, 218, 247, 252, 278, 296, 324 |
| abstract_inverted_index.are | 229, 305 |
| abstract_inverted_index.for | 180, 199, 269 |
| abstract_inverted_index.its | 67 |
| abstract_inverted_index.min | 151 |
| abstract_inverted_index.new | 322 |
| abstract_inverted_index.the | 8, 14, 24, 43, 51, 61, 79, 114, 123, 139, 156, 166, 184, 197, 203, 208, 213, 219, 236, 257, 266, 279, 299, 302, 313, 316, 328 |
| abstract_inverted_index.(EC) | 46 |
| abstract_inverted_index.(ET) | 1 |
| abstract_inverted_index.(LE) | 22 |
| abstract_inverted_index.(ML) | 57 |
| abstract_inverted_index.(the | 290 |
| abstract_inverted_index.RMSE | 157 |
| abstract_inverted_index.SHAP | 187 |
| abstract_inverted_index.This | 130, 318 |
| abstract_inverted_index.W/m2 | 161, 171 |
| abstract_inverted_index.cost | 220 |
| abstract_inverted_index.data | 34, 76, 134, 216, 225, 272 |
| abstract_inverted_index.eddy | 44 |
| abstract_inverted_index.fill | 327 |
| abstract_inverted_index.flux | 21 |
| abstract_inverted_index.from | 135, 159, 169, 189, 244 |
| abstract_inverted_index.heat | 20 |
| abstract_inverted_index.into | 202 |
| abstract_inverted_index.land | 15 |
| abstract_inverted_index.much | 263 |
| abstract_inverted_index.only | 283 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.that | 112 |
| abstract_inverted_index.this | 104 |
| abstract_inverted_index.used | 95, 179 |
| abstract_inverted_index.with | 18, 91, 122 |
| abstract_inverted_index.10.74 | 170 |
| abstract_inverted_index.14.04 | 173 |
| abstract_inverted_index.17.90 | 160 |
| abstract_inverted_index.20.17 | 163 |
| abstract_inverted_index.7.46% | 295 |
| abstract_inverted_index.Heihe | 140 |
| abstract_inverted_index.River | 141 |
| abstract_inverted_index.W/m2, | 164 |
| abstract_inverted_index.W/m2. | 174 |
| abstract_inverted_index.basis | 198 |
| abstract_inverted_index.daily | 54 |
| abstract_inverted_index.data, | 155 |
| abstract_inverted_index.gaps. | 77 |
| abstract_inverted_index.input | 201 |
| abstract_inverted_index.light | 126 |
| abstract_inverted_index.model | 110, 227, 232 |
| abstract_inverted_index.often | 86 |
| abstract_inverted_index.other | 223 |
| abstract_inverted_index.plant | 146 |
| abstract_inverted_index.plays | 2 |
| abstract_inverted_index.range | 292 |
| abstract_inverted_index.ratio | 268 |
| abstract_inverted_index.study | 105, 319 |
| abstract_inverted_index.three | 136 |
| abstract_inverted_index.under | 256 |
| abstract_inverted_index.using | 133, 282, 307 |
| abstract_inverted_index.water | 9 |
| abstract_inverted_index.which | 206 |
| abstract_inverted_index.while | 165 |
| abstract_inverted_index.Basin, | 142 |
| abstract_inverted_index.China, | 143 |
| abstract_inverted_index.First, | 183 |
| abstract_inverted_index.Third, | 255 |
| abstract_inverted_index.across | 96 |
| abstract_inverted_index.carbon | 11 |
| abstract_inverted_index.cycles | 12 |
| abstract_inverted_index.during | 226 |
| abstract_inverted_index.energy | 25 |
| abstract_inverted_index.fusion | 120 |
| abstract_inverted_index.hourly | 52 |
| abstract_inverted_index.latent | 19 |
| abstract_inverted_index.method | 121, 177 |
| abstract_inverted_index.model. | 214, 317 |
| abstract_inverted_index.models | 58, 85, 192 |
| abstract_inverted_index.number | 238 |
| abstract_inverted_index.ranges | 158, 168 |
| abstract_inverted_index.relies | 87 |
| abstract_inverted_index.tested | 132 |
| abstract_inverted_index.types. | 148 |
| abstract_inverted_index.Second, | 215 |
| abstract_inverted_index.Shapley | 115 |
| abstract_inverted_index.adverse | 31 |
| abstract_inverted_index.between | 13, 64, 294 |
| abstract_inverted_index.capture | 60 |
| abstract_inverted_index.complex | 62 |
| abstract_inverted_index.feature | 181, 200, 224 |
| abstract_inverted_index.filling | 74 |
| abstract_inverted_index.further | 311 |
| abstract_inverted_index.initial | 237 |
| abstract_inverted_index.leading | 98 |
| abstract_inverted_index.linking | 7 |
| abstract_inverted_index.machine | 128 |
| abstract_inverted_index.missing | 153, 270, 329 |
| abstract_inverted_index.pivotal | 4 |
| abstract_inverted_index.premise | 258 |
| abstract_inverted_index.quality | 35 |
| abstract_inverted_index.reduced | 100 |
| abstract_inverted_index.scales. | 55 |
| abstract_inverted_index.station | 286 |
| abstract_inverted_index.weather | 285 |
| abstract_inverted_index.11.67%). | 297 |
| abstract_inverted_index.Bayesian | 124, 309 |
| abstract_inverted_index.However, | 78 |
| abstract_inverted_index.LightGBM | 303 |
| abstract_inverted_index.SHAP-AWF | 176 |
| abstract_inverted_index.accuracy | 261, 314 |
| abstract_inverted_index.adaptive | 118 |
| abstract_inverted_index.additive | 116 |
| abstract_inverted_index.approach | 323 |
| abstract_inverted_index.combines | 113 |
| abstract_inverted_index.enhanced | 289 |
| abstract_inverted_index.enhances | 207 |
| abstract_inverted_index.ensuring | 260 |
| abstract_inverted_index.factors, | 69 |
| abstract_inverted_index.features | 82, 93, 188, 240 |
| abstract_inverted_index.interval | 152 |
| abstract_inverted_index.measured | 41 |
| abstract_inverted_index.modeling | 101 |
| abstract_inverted_index.multiple | 190 |
| abstract_inverted_index.proposes | 106 |
| abstract_inverted_index.provides | 320 |
| abstract_inverted_index.reduced, | 230 |
| abstract_inverted_index.stations | 137, 243, 275 |
| abstract_inverted_index.superior | 71 |
| abstract_inverted_index.training | 228 |
| abstract_inverted_index.weighted | 119, 195 |
| abstract_inverted_index.(reducing | 235 |
| abstract_inverted_index.accuracy. | 102 |
| abstract_inverted_index.algorithm | 304 |
| abstract_inverted_index.automatic | 284 |
| abstract_inverted_index.different | 145, 242, 274 |
| abstract_inverted_index.empirical | 89 |
| abstract_inverted_index.enhancing | 312 |
| abstract_inverted_index.identical | 92 |
| abstract_inverted_index.improved, | 277 |
| abstract_inverted_index.improving | 231 |
| abstract_inverted_index.optimized | 306 |
| abstract_inverted_index.possible, | 265 |
| abstract_inverted_index.selection | 80 |
| abstract_inverted_index.stations, | 97 |
| abstract_inverted_index.Therefore, | 103 |
| abstract_inverted_index.adaptively | 194 |
| abstract_inverted_index.algorithm, | 205, 310 |
| abstract_inverted_index.algorithm. | 129 |
| abstract_inverted_index.collecting | 222 |
| abstract_inverted_index.covariance | 45 |
| abstract_inverted_index.efficiency | 234 |
| abstract_inverted_index.filtering, | 36 |
| abstract_inverted_index.frequently | 94 |
| abstract_inverted_index.functional | 147 |
| abstract_inverted_index.importance | 185 |
| abstract_inverted_index.instrument | 38 |
| abstract_inverted_index.knowledge, | 90 |
| abstract_inverted_index.redundancy | 217 |
| abstract_inverted_index.selection. | 182 |
| abstract_inverted_index.temporally | 48 |
| abstract_inverted_index.BO-LightGBM | 204 |
| abstract_inverted_index.atmosphere, | 17 |
| abstract_inverted_index.calculation | 233 |
| abstract_inverted_index.conditions, | 33 |
| abstract_inverted_index.effectively | 59 |
| abstract_inverted_index.gap-filling | 109, 267 |
| abstract_inverted_index.improvement | 291 |
| abstract_inverted_index.influencing | 68 |
| abstract_inverted_index.observation | 287 |
| abstract_inverted_index.performance | 72 |
| abstract_inverted_index.perspective | 325 |
| abstract_inverted_index.adaptability | 280 |
| abstract_inverted_index.explanations | 117 |
| abstract_inverted_index.measurement. | 333 |
| abstract_inverted_index.optimization | 125 |
| abstract_inverted_index.representing | 23, 144 |
| abstract_inverted_index.transparency | 211 |
| abstract_inverted_index.demonstrating | 70 |
| abstract_inverted_index.discontinuous | 49 |
| abstract_inverted_index.malfunctions, | 39 |
| abstract_inverted_index.manifestation | 26 |
| abstract_inverted_index.relationships | 63 |
| abstract_inverted_index.meteorological | 32 |
| abstract_inverted_index.respectively). | 254 |
| abstract_inverted_index.Simultaneously, | 298 |
| abstract_inverted_index.hyperparameters | 300 |
| abstract_inverted_index.Machine-learning | 56 |
| abstract_inverted_index.interpretability | 209 |
| abstract_inverted_index.ensemble-learning | 191 |
| abstract_inverted_index.gradient-boosting | 127 |
| abstract_inverted_index.Evapotranspiration | 0 |
| abstract_inverted_index.(SHAP-AWF-BO-LightGBM) | 111 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.89668333 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |