Covering-based $$(\alpha , \beta )$$-multi-granulation bipolar fuzzy rough set model under bipolar fuzzy preference relation with decision-making applications Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s40747-024-01371-w
The rough set (RS) and multi-granulation rough set (MGRS) theories have been successfully extended to accommodate preference analysis by substituting the equivalence relation (ER) with the dominance relation (DR). On the other hand, bipolarity refers to the explicit handling of positive and negative aspects of data. In this paper, with the help of bipolar fuzzy preference relation (BFPR) and bipolar fuzzy preference $$\delta $$ -covering (BFP $$\delta $$ C), we put forward the idea of BFP $$\delta $$ C based optimistic multi-granulation bipolar fuzzy rough set (BFP $$\delta $$ C-OMG-BFRS) model and BFP $$\delta $$ C based pessimistic multi-granulation bipolar fuzzy rough set (BFP $$\delta $$ C-PMG-BFRS) model. We examine several significant structural properties of BFP $$\delta $$ C-OMG-BFRS and BFP $$\delta $$ C-PMG-BFRS models in detail. Moreover, we discuss the relationship between BFP $$\delta $$ C-OMG-BFRS and BFP $$\delta $$ C-PMG-BFRS models. Eventually, we apply the BFP $$\delta $$ C-OMG-BFRS model for solving multi-criteria decision-making (MCDM). Furthermore, we demonstrate the effectiveness and feasibility of our designed approach by solving a numerical example. We further conduct a detailed comparison with certain existing methods. Last but not least, theoretical studies and practical examples reveals that our suggested approach dramatically enriches the MGRS theory and offers a novel strategy for knowledge discovery, which is practical in real-world circumstances.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s40747-024-01371-w
- https://link.springer.com/content/pdf/10.1007/s40747-024-01371-w.pdf
- OA Status
- gold
- Cited By
- 2
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392450661
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392450661Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s40747-024-01371-wDigital Object Identifier
- Title
-
Covering-based $$(\alpha , \beta )$$-multi-granulation bipolar fuzzy rough set model under bipolar fuzzy preference relation with decision-making applicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-05Full publication date if available
- Authors
-
Rizwan Gul, Muhammad Shabir, Ahmad N. Al‐KenaniList of authors in order
- Landing page
-
https://doi.org/10.1007/s40747-024-01371-wPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s40747-024-01371-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s40747-024-01371-w.pdfDirect OA link when available
- Concepts
-
Alpha (finance), Preference relation, Granulation, Computational intelligence, Relation (database), Preference, BETA (programming language), Fuzzy logic, Computer science, Mathematics, Data mining, Artificial intelligence, Statistics, Engineering, Programming language, Construct validity, Geotechnical engineering, PsychometricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392450661 |
|---|---|
| doi | https://doi.org/10.1007/s40747-024-01371-w |
| ids.doi | https://doi.org/10.1007/s40747-024-01371-w |
| ids.openalex | https://openalex.org/W4392450661 |
| fwci | 1.58027115 |
| type | article |
| title | Covering-based $$(\alpha , \beta )$$-multi-granulation bipolar fuzzy rough set model under bipolar fuzzy preference relation with decision-making applications |
| biblio.issue | 3 |
| biblio.volume | 10 |
| biblio.last_page | 4372 |
| biblio.first_page | 4351 |
| topics[0].id | https://openalex.org/T11063 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Rough Sets and Fuzzy Logic |
| topics[1].id | https://openalex.org/T10538 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9562000036239624 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Data Mining Algorithms and Applications |
| is_xpac | False |
| apc_list.value | 1320 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1619 |
| apc_paid.value | 1320 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1619 |
| concepts[0].id | https://openalex.org/C64943373 |
| concepts[0].level | 4 |
| concepts[0].score | 0.6695891618728638 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2651003 |
| concepts[0].display_name | Alpha (finance) |
| concepts[1].id | https://openalex.org/C2777062324 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6268864870071411 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25036211 |
| concepts[1].display_name | Preference relation |
| concepts[2].id | https://openalex.org/C88463166 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6157523393630981 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1543243 |
| concepts[2].display_name | Granulation |
| concepts[3].id | https://openalex.org/C139502532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6069369316101074 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1122090 |
| concepts[3].display_name | Computational intelligence |
| concepts[4].id | https://openalex.org/C25343380 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5883184671401978 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[4].display_name | Relation (database) |
| concepts[5].id | https://openalex.org/C2781249084 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5045818090438843 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q908656 |
| concepts[5].display_name | Preference |
| concepts[6].id | https://openalex.org/C2776174256 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5015933513641357 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q830842 |
| concepts[6].display_name | BETA (programming language) |
| concepts[7].id | https://openalex.org/C58166 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48347169160842896 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[7].display_name | Fuzzy logic |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.37879857420921326 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3512284755706787 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2966930866241455 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.26718276739120483 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.15903672575950623 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.15784534811973572 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C49453240 |
| concepts[15].level | 3 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1592163 |
| concepts[15].display_name | Construct validity |
| concepts[16].id | https://openalex.org/C187320778 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[16].display_name | Geotechnical engineering |
| concepts[17].id | https://openalex.org/C171606756 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q506132 |
| concepts[17].display_name | Psychometrics |
| keywords[0].id | https://openalex.org/keywords/alpha |
| keywords[0].score | 0.6695891618728638 |
| keywords[0].display_name | Alpha (finance) |
| keywords[1].id | https://openalex.org/keywords/preference-relation |
| keywords[1].score | 0.6268864870071411 |
| keywords[1].display_name | Preference relation |
| keywords[2].id | https://openalex.org/keywords/granulation |
| keywords[2].score | 0.6157523393630981 |
| keywords[2].display_name | Granulation |
| keywords[3].id | https://openalex.org/keywords/computational-intelligence |
| keywords[3].score | 0.6069369316101074 |
| keywords[3].display_name | Computational intelligence |
| keywords[4].id | https://openalex.org/keywords/relation |
| keywords[4].score | 0.5883184671401978 |
| keywords[4].display_name | Relation (database) |
| keywords[5].id | https://openalex.org/keywords/preference |
| keywords[5].score | 0.5045818090438843 |
| keywords[5].display_name | Preference |
| keywords[6].id | https://openalex.org/keywords/beta |
| keywords[6].score | 0.5015933513641357 |
| keywords[6].display_name | BETA (programming language) |
| keywords[7].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[7].score | 0.48347169160842896 |
| keywords[7].display_name | Fuzzy logic |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.37879857420921326 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.3512284755706787 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.2966930866241455 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.26718276739120483 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.15903672575950623 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.15784534811973572 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1007/s40747-024-01371-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3035462843 |
| locations[0].source.issn | 2198-6053, 2199-4536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2198-6053 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Complex & Intelligent Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-024-01371-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Complex & Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s40747-024-01371-w |
| locations[1].id | pmh:oai:doaj.org/article:d7bd4877271c4f50bc9f128fa9fcf3de |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Complex & Intelligent Systems, Vol 10, Iss 3, Pp 4351-4372 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/d7bd4877271c4f50bc9f128fa9fcf3de |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5023804984 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6139-1872 |
| authorships[0].author.display_name | Rizwan Gul |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I12469534 |
| authorships[0].affiliations[0].raw_affiliation_string | Quaid-i-Azam University, Islamabad, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I12469534 |
| authorships[0].institutions[0].ror | https://ror.org/04s9hft57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I12469534 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | Quaid-i-Azam University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rizwan Gul |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Quaid-i-Azam University, Islamabad, Pakistan |
| authorships[1].author.id | https://openalex.org/A5078902055 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3161-8482 |
| authorships[1].author.display_name | Muhammad Shabir |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I12469534 |
| authorships[1].affiliations[0].raw_affiliation_string | Quaid-i-Azam University, Islamabad, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I12469534 |
| authorships[1].institutions[0].ror | https://ror.org/04s9hft57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I12469534 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | Quaid-i-Azam University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muhammad Shabir |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Quaid-i-Azam University, Islamabad, Pakistan |
| authorships[2].author.id | https://openalex.org/A5009981956 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ahmad N. Al‐Kenani |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I185163786 |
| authorships[2].affiliations[0].raw_affiliation_string | King Abdulaziz University, Jeddah, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I185163786 |
| authorships[2].institutions[0].ror | https://ror.org/02ma4wv74 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I185163786 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | King Abdulaziz University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ahmad N. Al-Kenani |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | King Abdulaziz University, Jeddah, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s40747-024-01371-w.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Covering-based $$(\alpha , \beta )$$-multi-granulation bipolar fuzzy rough set model under bipolar fuzzy preference relation with decision-making applications |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11063 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Rough Sets and Fuzzy Logic |
| related_works | https://openalex.org/W2461754875, https://openalex.org/W2467787427, https://openalex.org/W986421643, https://openalex.org/W2321404138, https://openalex.org/W2305072774, https://openalex.org/W2416108297, https://openalex.org/W1970315261, https://openalex.org/W3047732266, https://openalex.org/W871102734, https://openalex.org/W2474436399 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s40747-024-01371-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3035462843 |
| best_oa_location.source.issn | 2198-6053, 2199-4536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2198-6053 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Complex & Intelligent Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-024-01371-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Complex & Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s40747-024-01371-w |
| primary_location.id | doi:10.1007/s40747-024-01371-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3035462843 |
| primary_location.source.issn | 2198-6053, 2199-4536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2198-6053 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Complex & Intelligent Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-024-01371-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Complex & Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s40747-024-01371-w |
| publication_date | 2024-03-05 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2804939729, https://openalex.org/W2888870504, https://openalex.org/W2985192750, https://openalex.org/W2091358819, https://openalex.org/W2027654459, https://openalex.org/W1484754041, https://openalex.org/W2172368975, https://openalex.org/W1601687988, https://openalex.org/W2101285186, https://openalex.org/W2051958371, https://openalex.org/W4386888678, https://openalex.org/W1965795249, https://openalex.org/W2293867546, https://openalex.org/W2206629237, https://openalex.org/W3020697994, https://openalex.org/W2074145995, https://openalex.org/W2896010100, https://openalex.org/W2614271157, https://openalex.org/W2955698281, https://openalex.org/W2931899568, https://openalex.org/W2973841086, https://openalex.org/W1976555061, https://openalex.org/W2066150658, https://openalex.org/W2105012045, https://openalex.org/W2977500144, https://openalex.org/W2935914042, https://openalex.org/W2745338840, https://openalex.org/W2884022287, https://openalex.org/W4234411042, https://openalex.org/W2512214103, https://openalex.org/W4255833381, https://openalex.org/W2143451122, https://openalex.org/W2305735113, https://openalex.org/W2170755382, https://openalex.org/W2162755671, https://openalex.org/W2905252792, https://openalex.org/W2463945886, https://openalex.org/W2069125985, https://openalex.org/W2566882407, https://openalex.org/W2049204733, https://openalex.org/W2586356223, https://openalex.org/W2890144670, https://openalex.org/W2897172012, https://openalex.org/W2664295321, https://openalex.org/W2607421718, https://openalex.org/W3007593690, https://openalex.org/W1973688644, https://openalex.org/W2084910209, https://openalex.org/W1998857926, https://openalex.org/W2023441160, https://openalex.org/W2982471993, https://openalex.org/W4211007335, https://openalex.org/W2887485161, https://openalex.org/W2914676799, https://openalex.org/W1751558718, https://openalex.org/W2917046450, https://openalex.org/W1997362234, https://openalex.org/W4245699803, https://openalex.org/W2294654886 |
| referenced_works_count | 59 |
| abstract_inverted_index.C | 91, 116 |
| abstract_inverted_index.a | 215, 221, 249 |
| abstract_inverted_index.$$ | 64, 72, 86, 101, 111, 126, 142, 151, 168, 177, 190 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.On | 30 |
| abstract_inverted_index.We | 133, 218 |
| abstract_inverted_index.by | 19, 213 |
| abstract_inverted_index.in | 158, 258 |
| abstract_inverted_index.is | 256 |
| abstract_inverted_index.of | 40, 45, 53, 83, 139, 209 |
| abstract_inverted_index.to | 15, 36 |
| abstract_inverted_index.we | 78, 161, 185, 203 |
| abstract_inverted_index.BFP | 84, 109, 140, 149, 166, 175, 188 |
| abstract_inverted_index.C), | 77 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 5, 42, 59, 108, 148, 174, 207, 234, 247 |
| abstract_inverted_index.but | 229 |
| abstract_inverted_index.for | 197, 252 |
| abstract_inverted_index.not | 230 |
| abstract_inverted_index.our | 210, 239 |
| abstract_inverted_index.put | 79 |
| abstract_inverted_index.set | 3, 8, 98, 123 |
| abstract_inverted_index.the | 21, 26, 31, 37, 51, 81, 163, 187, 205, 244 |
| abstract_inverted_index.(BFP | 70, 99, 124 |
| abstract_inverted_index.(ER) | 24 |
| abstract_inverted_index.(RS) | 4 |
| abstract_inverted_index.Last | 228 |
| abstract_inverted_index.MGRS | 245 |
| abstract_inverted_index.been | 12 |
| abstract_inverted_index.have | 11 |
| abstract_inverted_index.help | 52 |
| abstract_inverted_index.idea | 82 |
| abstract_inverted_index.that | 238 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.with | 25, 50, 224 |
| abstract_inverted_index.(DR). | 29 |
| abstract_inverted_index.apply | 186 |
| abstract_inverted_index.based | 92, 117 |
| abstract_inverted_index.data. | 46 |
| abstract_inverted_index.fuzzy | 55, 61, 96, 121 |
| abstract_inverted_index.hand, | 33 |
| abstract_inverted_index.model | 107, 196 |
| abstract_inverted_index.novel | 250 |
| abstract_inverted_index.other | 32 |
| abstract_inverted_index.rough | 2, 7, 97, 122 |
| abstract_inverted_index.which | 255 |
| abstract_inverted_index.(BFPR) | 58 |
| abstract_inverted_index.(MGRS) | 9 |
| abstract_inverted_index.least, | 231 |
| abstract_inverted_index.model. | 132 |
| abstract_inverted_index.models | 157 |
| abstract_inverted_index.offers | 248 |
| abstract_inverted_index.paper, | 49 |
| abstract_inverted_index.refers | 35 |
| abstract_inverted_index.theory | 246 |
| abstract_inverted_index.(MCDM). | 201 |
| abstract_inverted_index.aspects | 44 |
| abstract_inverted_index.between | 165 |
| abstract_inverted_index.bipolar | 54, 60, 95, 120 |
| abstract_inverted_index.certain | 225 |
| abstract_inverted_index.conduct | 220 |
| abstract_inverted_index.detail. | 159 |
| abstract_inverted_index.discuss | 162 |
| abstract_inverted_index.examine | 134 |
| abstract_inverted_index.forward | 80 |
| abstract_inverted_index.further | 219 |
| abstract_inverted_index.models. | 183 |
| abstract_inverted_index.reveals | 237 |
| abstract_inverted_index.several | 135 |
| abstract_inverted_index.solving | 198, 214 |
| abstract_inverted_index.studies | 233 |
| abstract_inverted_index.$$\delta | 63, 71, 85, 100, 110, 125, 141, 150, 167, 176, 189 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analysis | 18 |
| abstract_inverted_index.approach | 212, 241 |
| abstract_inverted_index.designed | 211 |
| abstract_inverted_index.detailed | 222 |
| abstract_inverted_index.enriches | 243 |
| abstract_inverted_index.example. | 217 |
| abstract_inverted_index.examples | 236 |
| abstract_inverted_index.existing | 226 |
| abstract_inverted_index.explicit | 38 |
| abstract_inverted_index.extended | 14 |
| abstract_inverted_index.handling | 39 |
| abstract_inverted_index.methods. | 227 |
| abstract_inverted_index.negative | 43 |
| abstract_inverted_index.positive | 41 |
| abstract_inverted_index.relation | 23, 28, 57 |
| abstract_inverted_index.strategy | 251 |
| abstract_inverted_index.theories | 10 |
| abstract_inverted_index.-covering | 69 |
| abstract_inverted_index.<mml:math | 65, 73, 87, 102, 112, 127, 143, 152, 169, 178, 191 |
| abstract_inverted_index.Moreover, | 160 |
| abstract_inverted_index.dominance | 27 |
| abstract_inverted_index.knowledge | 253 |
| abstract_inverted_index.numerical | 216 |
| abstract_inverted_index.practical | 235, 257 |
| abstract_inverted_index.suggested | 240 |
| abstract_inverted_index.C-OMG-BFRS | 147, 173, 195 |
| abstract_inverted_index.C-PMG-BFRS | 156, 182 |
| abstract_inverted_index.bipolarity | 34 |
| abstract_inverted_index.comparison | 223 |
| abstract_inverted_index.discovery, | 254 |
| abstract_inverted_index.optimistic | 93 |
| abstract_inverted_index.preference | 17, 56, 62 |
| abstract_inverted_index.properties | 138 |
| abstract_inverted_index.real-world | 259 |
| abstract_inverted_index.structural | 137 |
| abstract_inverted_index.</mml:math> | 68, 76, 90, 105, 115, 130, 146, 155, 172, 181, 194 |
| abstract_inverted_index.C-OMG-BFRS) | 106 |
| abstract_inverted_index.C-PMG-BFRS) | 131 |
| abstract_inverted_index.Eventually, | 184 |
| abstract_inverted_index.accommodate | 16 |
| abstract_inverted_index.demonstrate | 204 |
| abstract_inverted_index.equivalence | 22 |
| abstract_inverted_index.feasibility | 208 |
| abstract_inverted_index.pessimistic | 118 |
| abstract_inverted_index.significant | 136 |
| abstract_inverted_index.theoretical | 232 |
| abstract_inverted_index.Furthermore, | 202 |
| abstract_inverted_index.dramatically | 242 |
| abstract_inverted_index.relationship | 164 |
| abstract_inverted_index.substituting | 20 |
| abstract_inverted_index.successfully | 13 |
| abstract_inverted_index.effectiveness | 206 |
| abstract_inverted_index.circumstances. | 260 |
| abstract_inverted_index.multi-criteria | 199 |
| abstract_inverted_index.decision-making | 200 |
| abstract_inverted_index.multi-granulation | 6, 94, 119 |
| abstract_inverted_index.<mml:mi>δ</mml:mi> | 67, 75, 89, 104, 114, 129, 145, 154, 171, 180, 193 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML"> | 66, 74, 88, 103, 113, 128, 144, 153, 170, 179, 192 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5023804984, https://openalex.org/A5009981956, https://openalex.org/A5078902055 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I12469534, https://openalex.org/I185163786 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.75176681 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |