CPMFFormer: Class-Aware Progressive Multiscale Fusion Transformer for Hyperspectral Image Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/rs17223684
Hyperspectral image (HSI) classification is a basic and significant task in remote sensing, the aim of which is to assign a class label to each pixel in an image. Recently, deep learning networks have been widely applied in HSI classification. They can extract discriminative spectral–spatial features through spectral weighting and multiscale spatial information modeling. However, existing spectral weighting mechanisms lack the ability to explore the inter-class spectral overlap caused by spectral variability. Moreover, current multiscale fusion strategies ignore semantic conflicts between features with large-scale differences. To address these problems, a class-aware progressive multiscale fusion transformer (CPMFFormer) is proposed. It first introduces class information into a spectral weighting mechanism. This helps CPMFFormer to learn class-specific spectral weights and enhance class-discriminative spectral features. Then, a center residual convolution module is constructed to extract features at different scales. It is embedded with a center feature calibration layer to achieve hierarchical enhancement of representative spatial features. Finally, a progressive multiscale fusion strategy is designed to promote effective collaboration between features at different scales. It achieves a smooth semantic transition by gradually fusing adjacent scale features. Experiments using five public HSI datasets show that CPMFFormer is rational and effective.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs17223684
- https://www.mdpi.com/2072-4292/17/22/3684/pdf?version=1762785091
- OA Status
- gold
- Cited By
- 1
- OpenAlex ID
- https://openalex.org/W4416074170
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416074170Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs17223684Digital Object Identifier
- Title
-
CPMFFormer: Class-Aware Progressive Multiscale Fusion Transformer for Hyperspectral Image ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-10Full publication date if available
- Authors
-
Meng Zhang, Yi Yang, Sixian Zhang, Pengbo Mi, Deqiang HanList of authors in order
- Landing page
-
https://doi.org/10.3390/rs17223684Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/17/22/3684/pdf?version=1762785091Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/17/22/3684/pdf?version=1762785091Direct OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
Full payload
| id | https://openalex.org/W4416074170 |
|---|---|
| doi | https://doi.org/10.3390/rs17223684 |
| ids.doi | https://doi.org/10.3390/rs17223684 |
| ids.openalex | https://openalex.org/W4416074170 |
| fwci | |
| type | article |
| title | CPMFFormer: Class-Aware Progressive Multiscale Fusion Transformer for Hyperspectral Image Classification |
| biblio.issue | 22 |
| biblio.volume | 17 |
| biblio.last_page | 3684 |
| biblio.first_page | 3684 |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| language | en |
| locations[0].id | doi:10.3390/rs17223684 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/17/22/3684/pdf?version=1762785091 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs17223684 |
| locations[1].id | pmh:oai:doaj.org/article:17e004fe6b1d4631bb03b774720d950c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 17, Iss 22, p 3684 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/17e004fe6b1d4631bb03b774720d950c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5020953154 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-2529-8654 |
| authorships[0].author.display_name | Meng Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[0].institutions[0].id | https://openalex.org/I87445476 |
| authorships[0].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Meng Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[1].author.id | https://openalex.org/A5101600734 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4973-0464 |
| authorships[1].author.display_name | Yi Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[1].institutions[0].id | https://openalex.org/I87445476 |
| authorships[1].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yi Yang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[2].author.id | https://openalex.org/A5017213372 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sixian Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[2].institutions[0].id | https://openalex.org/I87445476 |
| authorships[2].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sixian Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[3].author.id | https://openalex.org/A5012466382 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7737-070X |
| authorships[3].author.display_name | Pengbo Mi |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[3].institutions[0].id | https://openalex.org/I87445476 |
| authorships[3].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pengbo Mi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[4].author.id | https://openalex.org/A5024649502 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5603-796X |
| authorships[4].author.display_name | Deqiang Han |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[4].institutions[0].id | https://openalex.org/I87445476 |
| authorships[4].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Deqiang Han |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Automation Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/17/22/3684/pdf?version=1762785091 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-10T00:00:00 |
| display_name | CPMFFormer: Class-Aware Progressive Multiscale Fusion Transformer for Hyperspectral Image Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T23:14:17.795251 |
| primary_topic | |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs17223684 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/17/22/3684/pdf?version=1762785091 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs17223684 |
| primary_location.id | doi:10.3390/rs17223684 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/17/22/3684/pdf?version=1762785091 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs17223684 |
| publication_date | 2025-11-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 20, 89, 104, 122, 139, 153, 171 |
| abstract_inverted_index.It | 98, 135, 169 |
| abstract_inverted_index.To | 85 |
| abstract_inverted_index.an | 27 |
| abstract_inverted_index.at | 132, 166 |
| abstract_inverted_index.by | 69, 175 |
| abstract_inverted_index.in | 10, 26, 37 |
| abstract_inverted_index.is | 4, 17, 96, 127, 136, 158, 190 |
| abstract_inverted_index.of | 15, 148 |
| abstract_inverted_index.to | 18, 23, 62, 111, 129, 144, 160 |
| abstract_inverted_index.HSI | 38, 185 |
| abstract_inverted_index.aim | 14 |
| abstract_inverted_index.and | 7, 49, 116, 192 |
| abstract_inverted_index.can | 41 |
| abstract_inverted_index.the | 13, 60, 64 |
| abstract_inverted_index.They | 40 |
| abstract_inverted_index.This | 108 |
| abstract_inverted_index.been | 34 |
| abstract_inverted_index.deep | 30 |
| abstract_inverted_index.each | 24 |
| abstract_inverted_index.five | 183 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.into | 103 |
| abstract_inverted_index.lack | 59 |
| abstract_inverted_index.show | 187 |
| abstract_inverted_index.task | 9 |
| abstract_inverted_index.that | 188 |
| abstract_inverted_index.with | 82, 138 |
| abstract_inverted_index.(HSI) | 2 |
| abstract_inverted_index.Then, | 121 |
| abstract_inverted_index.basic | 6 |
| abstract_inverted_index.class | 21, 101 |
| abstract_inverted_index.first | 99 |
| abstract_inverted_index.helps | 109 |
| abstract_inverted_index.image | 1 |
| abstract_inverted_index.label | 22 |
| abstract_inverted_index.layer | 143 |
| abstract_inverted_index.learn | 112 |
| abstract_inverted_index.pixel | 25 |
| abstract_inverted_index.scale | 179 |
| abstract_inverted_index.these | 87 |
| abstract_inverted_index.using | 182 |
| abstract_inverted_index.which | 16 |
| abstract_inverted_index.assign | 19 |
| abstract_inverted_index.caused | 68 |
| abstract_inverted_index.center | 123, 140 |
| abstract_inverted_index.fusing | 177 |
| abstract_inverted_index.fusion | 75, 93, 156 |
| abstract_inverted_index.ignore | 77 |
| abstract_inverted_index.image. | 28 |
| abstract_inverted_index.module | 126 |
| abstract_inverted_index.public | 184 |
| abstract_inverted_index.remote | 11 |
| abstract_inverted_index.smooth | 172 |
| abstract_inverted_index.widely | 35 |
| abstract_inverted_index.ability | 61 |
| abstract_inverted_index.achieve | 145 |
| abstract_inverted_index.address | 86 |
| abstract_inverted_index.applied | 36 |
| abstract_inverted_index.between | 80, 164 |
| abstract_inverted_index.current | 73 |
| abstract_inverted_index.enhance | 117 |
| abstract_inverted_index.explore | 63 |
| abstract_inverted_index.extract | 42, 130 |
| abstract_inverted_index.feature | 141 |
| abstract_inverted_index.overlap | 67 |
| abstract_inverted_index.promote | 161 |
| abstract_inverted_index.scales. | 134, 168 |
| abstract_inverted_index.spatial | 51, 150 |
| abstract_inverted_index.through | 46 |
| abstract_inverted_index.weights | 115 |
| abstract_inverted_index.Finally, | 152 |
| abstract_inverted_index.However, | 54 |
| abstract_inverted_index.achieves | 170 |
| abstract_inverted_index.adjacent | 178 |
| abstract_inverted_index.datasets | 186 |
| abstract_inverted_index.designed | 159 |
| abstract_inverted_index.embedded | 137 |
| abstract_inverted_index.existing | 55 |
| abstract_inverted_index.features | 45, 81, 131, 165 |
| abstract_inverted_index.learning | 31 |
| abstract_inverted_index.networks | 32 |
| abstract_inverted_index.rational | 191 |
| abstract_inverted_index.residual | 124 |
| abstract_inverted_index.semantic | 78, 173 |
| abstract_inverted_index.sensing, | 12 |
| abstract_inverted_index.spectral | 47, 56, 66, 70, 105, 114, 119 |
| abstract_inverted_index.strategy | 157 |
| abstract_inverted_index.Moreover, | 72 |
| abstract_inverted_index.Recently, | 29 |
| abstract_inverted_index.conflicts | 79 |
| abstract_inverted_index.different | 133, 167 |
| abstract_inverted_index.effective | 162 |
| abstract_inverted_index.features. | 120, 151, 180 |
| abstract_inverted_index.gradually | 176 |
| abstract_inverted_index.modeling. | 53 |
| abstract_inverted_index.problems, | 88 |
| abstract_inverted_index.proposed. | 97 |
| abstract_inverted_index.weighting | 48, 57, 106 |
| abstract_inverted_index.CPMFFormer | 110, 189 |
| abstract_inverted_index.effective. | 193 |
| abstract_inverted_index.introduces | 100 |
| abstract_inverted_index.mechanism. | 107 |
| abstract_inverted_index.mechanisms | 58 |
| abstract_inverted_index.multiscale | 50, 74, 92, 155 |
| abstract_inverted_index.strategies | 76 |
| abstract_inverted_index.transition | 174 |
| abstract_inverted_index.Experiments | 181 |
| abstract_inverted_index.calibration | 142 |
| abstract_inverted_index.class-aware | 90 |
| abstract_inverted_index.constructed | 128 |
| abstract_inverted_index.convolution | 125 |
| abstract_inverted_index.enhancement | 147 |
| abstract_inverted_index.information | 52, 102 |
| abstract_inverted_index.inter-class | 65 |
| abstract_inverted_index.large-scale | 83 |
| abstract_inverted_index.progressive | 91, 154 |
| abstract_inverted_index.significant | 8 |
| abstract_inverted_index.transformer | 94 |
| abstract_inverted_index.(CPMFFormer) | 95 |
| abstract_inverted_index.differences. | 84 |
| abstract_inverted_index.hierarchical | 146 |
| abstract_inverted_index.variability. | 71 |
| abstract_inverted_index.Hyperspectral | 0 |
| abstract_inverted_index.collaboration | 163 |
| abstract_inverted_index.class-specific | 113 |
| abstract_inverted_index.classification | 3 |
| abstract_inverted_index.discriminative | 43 |
| abstract_inverted_index.representative | 149 |
| abstract_inverted_index.classification. | 39 |
| abstract_inverted_index.spectral–spatial | 44 |
| abstract_inverted_index.class-discriminative | 118 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5101600734 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I87445476 |
| citation_normalized_percentile |