CPT: Efficient Deep Neural Network Training via Cyclic Precision Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2101.09868
Low-precision deep neural network (DNN) training has gained tremendous attention as reducing precision is one of the most effective knobs for boosting DNNs' training time/energy efficiency. In this paper, we attempt to explore low-precision training from a new perspective as inspired by recent findings in understanding DNN training: we conjecture that DNNs' precision might have a similar effect as the learning rate during DNN training, and advocate dynamic precision along the training trajectory for further boosting the time/energy efficiency of DNN training. Specifically, we propose Cyclic Precision Training (CPT) to cyclically vary the precision between two boundary values which can be identified using a simple precision range test within the first few training epochs. Extensive simulations and ablation studies on five datasets and eleven models demonstrate that CPT's effectiveness is consistent across various models/tasks (including classification and language modeling). Furthermore, through experiments and visualization we show that CPT helps to (1) converge to a wider minima with a lower generalization error and (2) reduce training variance which we believe opens up a new design knob for simultaneously improving the optimization and efficiency of DNN training. Our codes are available at: https://github.com/RICE-EIC/CPT.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://arxiv.org/abs/2101.09868
- https://arxiv.org/pdf/2101.09868
- OA Status
- green
- Cited By
- 11
- References
- 57
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3120444801
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3120444801Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2101.09868Digital Object Identifier
- Title
-
CPT: Efficient Deep Neural Network Training via Cyclic PrecisionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-25Full publication date if available
- Authors
-
Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan LinList of authors in order
- Landing page
-
https://arxiv.org/abs/2101.09868Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2101.09868Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2101.09868Direct OA link when available
- Concepts
-
Computer science, Boosting (machine learning), Artificial neural network, Artificial intelligence, Perspective (graphical), Deep neural networks, Maxima and minima, Machine learning, Training (meteorology), Range (aeronautics), Generalization, Mathematics, Physics, Meteorology, Mathematical analysis, Composite material, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 4, 2022: 1, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3120444801 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2101.09868 |
| ids.doi | https://doi.org/10.48550/arxiv.2101.09868 |
| ids.mag | 3120444801 |
| ids.openalex | https://openalex.org/W3120444801 |
| fwci | |
| type | article |
| title | CPT: Efficient Deep Neural Network Training via Cyclic Precision |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8060577511787415 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C46686674 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6441199779510498 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[1].display_name | Boosting (machine learning) |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6121824383735657 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5436550378799438 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C12713177 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5196098685264587 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[4].display_name | Perspective (graphical) |
| concepts[5].id | https://openalex.org/C2984842247 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5158704519271851 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep neural networks |
| concepts[6].id | https://openalex.org/C186633575 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48833462595939636 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q845060 |
| concepts[6].display_name | Maxima and minima |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4858967661857605 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C2777211547 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48263460397720337 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[8].display_name | Training (meteorology) |
| concepts[9].id | https://openalex.org/C204323151 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46362924575805664 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[9].display_name | Range (aeronautics) |
| concepts[10].id | https://openalex.org/C177148314 |
| concepts[10].level | 2 |
| concepts[10].score | 0.433709979057312 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[10].display_name | Generalization |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09401527047157288 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C159985019 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[15].display_name | Composite material |
| concepts[16].id | https://openalex.org/C192562407 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[16].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8060577511787415 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/boosting |
| keywords[1].score | 0.6441199779510498 |
| keywords[1].display_name | Boosting (machine learning) |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.6121824383735657 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5436550378799438 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/perspective |
| keywords[4].score | 0.5196098685264587 |
| keywords[4].display_name | Perspective (graphical) |
| keywords[5].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[5].score | 0.5158704519271851 |
| keywords[5].display_name | Deep neural networks |
| keywords[6].id | https://openalex.org/keywords/maxima-and-minima |
| keywords[6].score | 0.48833462595939636 |
| keywords[6].display_name | Maxima and minima |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4858967661857605 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/training |
| keywords[8].score | 0.48263460397720337 |
| keywords[8].display_name | Training (meteorology) |
| keywords[9].id | https://openalex.org/keywords/range |
| keywords[9].score | 0.46362924575805664 |
| keywords[9].display_name | Range (aeronautics) |
| keywords[10].id | https://openalex.org/keywords/generalization |
| keywords[10].score | 0.433709979057312 |
| keywords[10].display_name | Generalization |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.09401527047157288 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2101.09868 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2101.09868 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2101.09868 |
| locations[1].id | doi:10.48550/arxiv.2101.09868 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2101.09868 |
| locations[2].id | mag:3120444801 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306419637 |
| locations[2].source.issn | |
| locations[2].source.type | conference |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | International Conference on Learning Representations |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | International Conference on Learning Representations |
| locations[2].landing_page_url | https://openreview.net/pdf?id=87ZwsaQNHPZ |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5061572132 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7483-2921 |
| authorships[0].author.display_name | Yonggan Fu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74775410 |
| authorships[0].affiliations[0].raw_affiliation_string | Rice Univ |
| authorships[0].institutions[0].id | https://openalex.org/I74775410 |
| authorships[0].institutions[0].ror | https://ror.org/008zs3103 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74775410 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Rice University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yonggan Fu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Rice Univ |
| authorships[1].author.id | https://openalex.org/A5041591669 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4257-8110 |
| authorships[1].author.display_name | Han Guo |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74775410 |
| authorships[1].affiliations[0].raw_affiliation_string | Rice Univ |
| authorships[1].institutions[0].id | https://openalex.org/I74775410 |
| authorships[1].institutions[0].ror | https://ror.org/008zs3103 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74775410 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Rice University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Han Guo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Rice Univ |
| authorships[2].author.id | https://openalex.org/A5100457556 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2123-2444 |
| authorships[2].author.display_name | Meng Li |
| authorships[2].countries | IL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2252078561 |
| authorships[2].affiliations[0].raw_affiliation_string | |
| authorships[2].institutions[0].id | https://openalex.org/I2252078561 |
| authorships[2].institutions[0].ror | https://ror.org/02388em19 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2252078561, https://openalex.org/I4210114444 |
| authorships[2].institutions[0].country_code | IL |
| authorships[2].institutions[0].display_name | Meta (Israel) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Meng Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | |
| authorships[3].author.id | https://openalex.org/A5066153744 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3431-5118 |
| authorships[3].author.display_name | Xin Yang |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74775410 |
| authorships[3].affiliations[0].raw_affiliation_string | Rice Univ |
| authorships[3].institutions[0].id | https://openalex.org/I74775410 |
| authorships[3].institutions[0].ror | https://ror.org/008zs3103 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74775410 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Rice University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xin Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Rice Univ |
| authorships[4].author.id | https://openalex.org/A5008027618 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yining Ding |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I74775410 |
| authorships[4].affiliations[0].raw_affiliation_string | Rice Univ |
| authorships[4].institutions[0].id | https://openalex.org/I74775410 |
| authorships[4].institutions[0].ror | https://ror.org/008zs3103 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I74775410 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Rice University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yining Ding |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Rice Univ |
| authorships[5].author.id | https://openalex.org/A5016704219 |
| authorships[5].author.orcid | https://orcid.org/0009-0005-4996-8455 |
| authorships[5].author.display_name | Vikas Chandra |
| authorships[5].countries | IL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2252078561 |
| authorships[5].affiliations[0].raw_affiliation_string | |
| authorships[5].institutions[0].id | https://openalex.org/I2252078561 |
| authorships[5].institutions[0].ror | https://ror.org/02388em19 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I2252078561, https://openalex.org/I4210114444 |
| authorships[5].institutions[0].country_code | IL |
| authorships[5].institutions[0].display_name | Meta (Israel) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Vikas Chandra |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | |
| authorships[6].author.id | https://openalex.org/A5019582323 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5946-203X |
| authorships[6].author.display_name | Yingyan Lin |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I74775410 |
| authorships[6].affiliations[0].raw_affiliation_string | Rice Univ |
| authorships[6].institutions[0].id | https://openalex.org/I74775410 |
| authorships[6].institutions[0].ror | https://ror.org/008zs3103 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I74775410 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Rice University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yingyan Lin |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Rice Univ |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2101.09868 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CPT: Efficient Deep Neural Network Training via Cyclic Precision |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| related_works | https://openalex.org/W3125482586, https://openalex.org/W2972304044, https://openalex.org/W2755396225, https://openalex.org/W2903047678, https://openalex.org/W2887630004, https://openalex.org/W3113386868, https://openalex.org/W2965944882, https://openalex.org/W3205859423, https://openalex.org/W2970821029, https://openalex.org/W2982195460, https://openalex.org/W3016829100, https://openalex.org/W2972417230, https://openalex.org/W2763600295, https://openalex.org/W2908666743, https://openalex.org/W3006769269, https://openalex.org/W2949081261, https://openalex.org/W3129186946, https://openalex.org/W2931737270, https://openalex.org/W2802855137, https://openalex.org/W2752721426 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2101.09868 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2101.09868 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2101.09868 |
| primary_location.id | pmh:oai:arXiv.org:2101.09868 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2101.09868 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2101.09868 |
| publication_date | 2021-01-25 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2970821029, https://openalex.org/W2963273111, https://openalex.org/W3106655949, https://openalex.org/W2469490737, https://openalex.org/W2914483840, https://openalex.org/W2769312802, https://openalex.org/W2751477244, https://openalex.org/W2407022425, https://openalex.org/W2963631907, https://openalex.org/W2194775991, https://openalex.org/W2982479999, https://openalex.org/W1632114991, https://openalex.org/W3118608800, https://openalex.org/W2963403868, https://openalex.org/W2999599167, https://openalex.org/W2963664311, https://openalex.org/W2963163009, https://openalex.org/W2300242332, https://openalex.org/W3040551860, https://openalex.org/W2525332836, https://openalex.org/W2964054038, https://openalex.org/W3035232708, https://openalex.org/W2860338957, https://openalex.org/W3040522390, https://openalex.org/W2743945814, https://openalex.org/W2748818695, https://openalex.org/W2963709416, https://openalex.org/W2108598243, https://openalex.org/W2064675550, https://openalex.org/W3099584108, https://openalex.org/W2963374099, https://openalex.org/W2990765879, https://openalex.org/W3035183452, https://openalex.org/W2889797931, https://openalex.org/W2997760144, https://openalex.org/W2970388773, https://openalex.org/W2995197005, https://openalex.org/W2897097528, https://openalex.org/W2319920447, https://openalex.org/W2518108298, https://openalex.org/W2916954108, https://openalex.org/W2804193803, https://openalex.org/W2560017826, https://openalex.org/W3042701997, https://openalex.org/W2963393494, https://openalex.org/W1964929969, https://openalex.org/W2963114950, https://openalex.org/W2902036584, https://openalex.org/W2962933129, https://openalex.org/W2963112338, https://openalex.org/W2405920868, https://openalex.org/W2647836899, https://openalex.org/W2786098160, https://openalex.org/W2970233825, https://openalex.org/W2263490141, https://openalex.org/W2964004663, https://openalex.org/W2963480671 |
| referenced_works_count | 57 |
| abstract_inverted_index.a | 36, 55, 103, 153, 157, 171 |
| abstract_inverted_index.In | 26 |
| abstract_inverted_index.as | 10, 39, 58 |
| abstract_inverted_index.be | 100 |
| abstract_inverted_index.by | 41 |
| abstract_inverted_index.in | 44 |
| abstract_inverted_index.is | 13, 129 |
| abstract_inverted_index.of | 15, 79, 182 |
| abstract_inverted_index.on | 119 |
| abstract_inverted_index.to | 31, 89, 149, 152 |
| abstract_inverted_index.up | 170 |
| abstract_inverted_index.we | 29, 48, 83, 144, 167 |
| abstract_inverted_index.(1) | 150 |
| abstract_inverted_index.(2) | 162 |
| abstract_inverted_index.CPT | 147 |
| abstract_inverted_index.DNN | 46, 63, 80, 183 |
| abstract_inverted_index.Our | 185 |
| abstract_inverted_index.and | 65, 116, 122, 136, 142, 161, 180 |
| abstract_inverted_index.are | 187 |
| abstract_inverted_index.at: | 189 |
| abstract_inverted_index.can | 99 |
| abstract_inverted_index.few | 111 |
| abstract_inverted_index.for | 20, 73, 175 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.new | 37, 172 |
| abstract_inverted_index.one | 14 |
| abstract_inverted_index.the | 16, 59, 70, 76, 92, 109, 178 |
| abstract_inverted_index.two | 95 |
| abstract_inverted_index.deep | 1 |
| abstract_inverted_index.five | 120 |
| abstract_inverted_index.from | 35 |
| abstract_inverted_index.have | 54 |
| abstract_inverted_index.knob | 174 |
| abstract_inverted_index.most | 17 |
| abstract_inverted_index.rate | 61 |
| abstract_inverted_index.show | 145 |
| abstract_inverted_index.test | 107 |
| abstract_inverted_index.that | 50, 126, 146 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.vary | 91 |
| abstract_inverted_index.with | 156 |
| abstract_inverted_index.(CPT) | 88 |
| abstract_inverted_index.(DNN) | 4 |
| abstract_inverted_index.CPT's | 127 |
| abstract_inverted_index.DNNs' | 22, 51 |
| abstract_inverted_index.along | 69 |
| abstract_inverted_index.codes | 186 |
| abstract_inverted_index.error | 160 |
| abstract_inverted_index.first | 110 |
| abstract_inverted_index.helps | 148 |
| abstract_inverted_index.knobs | 19 |
| abstract_inverted_index.lower | 158 |
| abstract_inverted_index.might | 53 |
| abstract_inverted_index.opens | 169 |
| abstract_inverted_index.range | 106 |
| abstract_inverted_index.using | 102 |
| abstract_inverted_index.which | 98, 166 |
| abstract_inverted_index.wider | 154 |
| abstract_inverted_index.Cyclic | 85 |
| abstract_inverted_index.across | 131 |
| abstract_inverted_index.design | 173 |
| abstract_inverted_index.during | 62 |
| abstract_inverted_index.effect | 57 |
| abstract_inverted_index.eleven | 123 |
| abstract_inverted_index.gained | 7 |
| abstract_inverted_index.minima | 155 |
| abstract_inverted_index.models | 124 |
| abstract_inverted_index.neural | 2 |
| abstract_inverted_index.paper, | 28 |
| abstract_inverted_index.recent | 42 |
| abstract_inverted_index.reduce | 163 |
| abstract_inverted_index.simple | 104 |
| abstract_inverted_index.values | 97 |
| abstract_inverted_index.within | 108 |
| abstract_inverted_index.attempt | 30 |
| abstract_inverted_index.believe | 168 |
| abstract_inverted_index.between | 94 |
| abstract_inverted_index.dynamic | 67 |
| abstract_inverted_index.epochs. | 113 |
| abstract_inverted_index.explore | 32 |
| abstract_inverted_index.further | 74 |
| abstract_inverted_index.network | 3 |
| abstract_inverted_index.propose | 84 |
| abstract_inverted_index.similar | 56 |
| abstract_inverted_index.studies | 118 |
| abstract_inverted_index.through | 140 |
| abstract_inverted_index.various | 132 |
| abstract_inverted_index.Training | 87 |
| abstract_inverted_index.ablation | 117 |
| abstract_inverted_index.advocate | 66 |
| abstract_inverted_index.boosting | 21, 75 |
| abstract_inverted_index.boundary | 96 |
| abstract_inverted_index.converge | 151 |
| abstract_inverted_index.datasets | 121 |
| abstract_inverted_index.findings | 43 |
| abstract_inverted_index.inspired | 40 |
| abstract_inverted_index.language | 137 |
| abstract_inverted_index.learning | 60 |
| abstract_inverted_index.reducing | 11 |
| abstract_inverted_index.training | 5, 23, 34, 71, 112, 164 |
| abstract_inverted_index.variance | 165 |
| abstract_inverted_index.Extensive | 114 |
| abstract_inverted_index.Precision | 86 |
| abstract_inverted_index.attention | 9 |
| abstract_inverted_index.available | 188 |
| abstract_inverted_index.effective | 18 |
| abstract_inverted_index.improving | 177 |
| abstract_inverted_index.precision | 12, 52, 68, 93, 105 |
| abstract_inverted_index.training, | 64 |
| abstract_inverted_index.training. | 81, 184 |
| abstract_inverted_index.training: | 47 |
| abstract_inverted_index.(including | 134 |
| abstract_inverted_index.conjecture | 49 |
| abstract_inverted_index.consistent | 130 |
| abstract_inverted_index.cyclically | 90 |
| abstract_inverted_index.efficiency | 78, 181 |
| abstract_inverted_index.identified | 101 |
| abstract_inverted_index.modeling). | 138 |
| abstract_inverted_index.trajectory | 72 |
| abstract_inverted_index.tremendous | 8 |
| abstract_inverted_index.demonstrate | 125 |
| abstract_inverted_index.efficiency. | 25 |
| abstract_inverted_index.experiments | 141 |
| abstract_inverted_index.perspective | 38 |
| abstract_inverted_index.simulations | 115 |
| abstract_inverted_index.time/energy | 24, 77 |
| abstract_inverted_index.Furthermore, | 139 |
| abstract_inverted_index.models/tasks | 133 |
| abstract_inverted_index.optimization | 179 |
| abstract_inverted_index.Low-precision | 0 |
| abstract_inverted_index.Specifically, | 82 |
| abstract_inverted_index.effectiveness | 128 |
| abstract_inverted_index.low-precision | 33 |
| abstract_inverted_index.understanding | 45 |
| abstract_inverted_index.visualization | 143 |
| abstract_inverted_index.classification | 135 |
| abstract_inverted_index.generalization | 159 |
| abstract_inverted_index.simultaneously | 176 |
| abstract_inverted_index.https://github.com/RICE-EIC/CPT. | 190 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |