CRG-MGAN: A Speech Enhancement Algorithm Based on GAN Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-4698673/v1
Transformer can be effectively applied to speech enhancement tasks based on Generative Adversarial Network (GAN). However, it still remains challenging to extract temporal dependencies within the signal sequence features as well as to improve training stability. To address these issues, a new light-weight network is proposed for speech enhancement in the time-frequency domain named CRG-MGAN. It is a type of MetricGAN based on convolution and recurrent-augmented spatially gated attention. In the generator of the CRG-MGAN, Convolutional Recurrently Enhanced Gated Attention Unit (CRGU) is used for feature extraction, which is an improved Transformer structure. The CRGU can effectively extract more complete feature information of speech, focus on the temporal dependencies within the signal sequence, reduce the loss of feature information, and reduce the computational complexity of the Transformer. In the decoding stage, the mask decoder structure is improved by using a two-branch activation function structure instead of a single activation function, which prevents gradient explosion and effectively outputs the magnitude information, thus improving the stability of the training process. We conduct extensive experiments with the Voice Bank + Demand datasets. Objective test results show that the performance of the proposed system is highly competitive with existing systems. Specifically, the CRG-MGAN model achieves a PESQ score of 3.48, STOI of 0.96, and SSNR of 11.14dB, with a relatively small model size of 1.67M.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-4698673/v1
- https://www.researchsquare.com/article/rs-4698673/latest.pdf
- OA Status
- gold
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401278435
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401278435Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-4698673/v1Digital Object Identifier
- Title
-
CRG-MGAN: A Speech Enhancement Algorithm Based on GANWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-02Full publication date if available
- Authors
-
Wenzhuo Zhang, Ling Yu, Fanglin Niu, Xiaozhen LiList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-4698673/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-4698673/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-4698673/latest.pdfDirect OA link when available
- Concepts
-
PESQ, Computer science, Transformer, Speech recognition, Decoding methods, Artificial intelligence, Algorithm, Pattern recognition (psychology), Speech enhancement, Voltage, Engineering, Noise reduction, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401278435 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-4698673/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-4698673/v1 |
| ids.openalex | https://openalex.org/W4401278435 |
| fwci | 0.0 |
| type | preprint |
| title | CRG-MGAN: A Speech Enhancement Algorithm Based on GAN |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10860 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Speech and Audio Processing |
| topics[1].id | https://openalex.org/T10201 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9944000244140625 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Speech Recognition and Synthesis |
| topics[2].id | https://openalex.org/T11233 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Advanced Adaptive Filtering Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C103734657 |
| concepts[0].level | 4 |
| concepts[0].score | 0.862610936164856 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2739975 |
| concepts[0].display_name | PESQ |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7140290141105652 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C66322947 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6487784385681152 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[2].display_name | Transformer |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.49477070569992065 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C57273362 |
| concepts[4].level | 2 |
| concepts[4].score | 0.42888569831848145 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[4].display_name | Decoding methods |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4025595486164093 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40005654096603394 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3566659092903137 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C2776182073 |
| concepts[8].level | 3 |
| concepts[8].score | 0.34587040543556213 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7575395 |
| concepts[8].display_name | Speech enhancement |
| concepts[9].id | https://openalex.org/C165801399 |
| concepts[9].level | 2 |
| concepts[9].score | 0.16298916935920715 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[9].display_name | Voltage |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.09399488568305969 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C163294075 |
| concepts[11].level | 2 |
| concepts[11].score | 0.07605639100074768 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[11].display_name | Noise reduction |
| concepts[12].id | https://openalex.org/C119599485 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[12].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/pesq |
| keywords[0].score | 0.862610936164856 |
| keywords[0].display_name | PESQ |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7140290141105652 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/transformer |
| keywords[2].score | 0.6487784385681152 |
| keywords[2].display_name | Transformer |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.49477070569992065 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/decoding-methods |
| keywords[4].score | 0.42888569831848145 |
| keywords[4].display_name | Decoding methods |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4025595486164093 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.40005654096603394 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3566659092903137 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/speech-enhancement |
| keywords[8].score | 0.34587040543556213 |
| keywords[8].display_name | Speech enhancement |
| keywords[9].id | https://openalex.org/keywords/voltage |
| keywords[9].score | 0.16298916935920715 |
| keywords[9].display_name | Voltage |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.09399488568305969 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/noise-reduction |
| keywords[11].score | 0.07605639100074768 |
| keywords[11].display_name | Noise reduction |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-4698673/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-4698673/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-4698673/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101962504 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9978-0662 |
| authorships[0].author.display_name | Wenzhuo Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2898894 |
| authorships[0].affiliations[0].raw_affiliation_string | Liaoning University of Technology |
| authorships[0].institutions[0].id | https://openalex.org/I2898894 |
| authorships[0].institutions[0].ror | https://ror.org/05ay23762 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2898894 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Liaoning University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenzhuo Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Liaoning University of Technology |
| authorships[1].author.id | https://openalex.org/A5100569746 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6236-2117 |
| authorships[1].author.display_name | Ling Yu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2898894 |
| authorships[1].affiliations[0].raw_affiliation_string | Liaoning University of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I2898894 |
| authorships[1].institutions[0].ror | https://ror.org/05ay23762 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2898894 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Liaoning University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ling Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Liaoning University of Technology |
| authorships[2].author.id | https://openalex.org/A5021764241 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9395-3529 |
| authorships[2].author.display_name | Fanglin Niu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2898894 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121001, China. |
| authorships[2].institutions[0].id | https://openalex.org/I2898894 |
| authorships[2].institutions[0].ror | https://ror.org/05ay23762 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I2898894 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Liaoning University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fanglin Niu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121001, China. |
| authorships[3].author.id | https://openalex.org/A5100348450 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9683-6341 |
| authorships[3].author.display_name | Xiaozhen Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2898894 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121001, China. |
| authorships[3].institutions[0].id | https://openalex.org/I2898894 |
| authorships[3].institutions[0].ror | https://ror.org/05ay23762 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2898894 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Liaoning University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xiaozhen Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121001, China. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-4698673/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CRG-MGAN: A Speech Enhancement Algorithm Based on GAN |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10860 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Speech and Audio Processing |
| related_works | https://openalex.org/W2058482658, https://openalex.org/W3016109656, https://openalex.org/W3135613579, https://openalex.org/W1973895194, https://openalex.org/W4388016426, https://openalex.org/W1980687383, https://openalex.org/W4386746628, https://openalex.org/W2546593254, https://openalex.org/W2166831097, https://openalex.org/W3209446892 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-4698673/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-4698673/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4698673/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-4698673/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-4698673/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4698673/v1 |
| publication_date | 2024-08-02 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6602820859, https://openalex.org/W160800111, https://openalex.org/W4319862255, https://openalex.org/W6601048975, https://openalex.org/W6600850999, https://openalex.org/W4221145205 |
| referenced_works_count | 6 |
| abstract_inverted_index.+ | 177 |
| abstract_inverted_index.a | 41, 58, 140, 147, 202, 215 |
| abstract_inverted_index.In | 70, 128 |
| abstract_inverted_index.It | 56 |
| abstract_inverted_index.To | 37 |
| abstract_inverted_index.We | 169 |
| abstract_inverted_index.an | 90 |
| abstract_inverted_index.as | 30, 32 |
| abstract_inverted_index.be | 3 |
| abstract_inverted_index.by | 138 |
| abstract_inverted_index.in | 50 |
| abstract_inverted_index.is | 45, 57, 83, 89, 136, 191 |
| abstract_inverted_index.it | 17 |
| abstract_inverted_index.of | 60, 73, 103, 117, 125, 146, 165, 187, 205, 208, 212, 220 |
| abstract_inverted_index.on | 11, 63, 106 |
| abstract_inverted_index.to | 6, 21, 33 |
| abstract_inverted_index.The | 94 |
| abstract_inverted_index.and | 65, 120, 155, 210 |
| abstract_inverted_index.can | 2, 96 |
| abstract_inverted_index.for | 47, 85 |
| abstract_inverted_index.new | 42 |
| abstract_inverted_index.the | 26, 51, 71, 74, 107, 111, 115, 122, 126, 129, 132, 158, 163, 166, 174, 185, 188, 198 |
| abstract_inverted_index.Bank | 176 |
| abstract_inverted_index.CRGU | 95 |
| abstract_inverted_index.PESQ | 203 |
| abstract_inverted_index.SSNR | 211 |
| abstract_inverted_index.STOI | 207 |
| abstract_inverted_index.Unit | 81 |
| abstract_inverted_index.loss | 116 |
| abstract_inverted_index.mask | 133 |
| abstract_inverted_index.more | 99 |
| abstract_inverted_index.show | 183 |
| abstract_inverted_index.size | 219 |
| abstract_inverted_index.test | 181 |
| abstract_inverted_index.that | 184 |
| abstract_inverted_index.thus | 161 |
| abstract_inverted_index.type | 59 |
| abstract_inverted_index.used | 84 |
| abstract_inverted_index.well | 31 |
| abstract_inverted_index.with | 173, 194, 214 |
| abstract_inverted_index.0.96, | 209 |
| abstract_inverted_index.3.48, | 206 |
| abstract_inverted_index.Gated | 79 |
| abstract_inverted_index.Voice | 175 |
| abstract_inverted_index.based | 10, 62 |
| abstract_inverted_index.focus | 105 |
| abstract_inverted_index.gated | 68 |
| abstract_inverted_index.model | 200, 218 |
| abstract_inverted_index.named | 54 |
| abstract_inverted_index.score | 204 |
| abstract_inverted_index.small | 217 |
| abstract_inverted_index.still | 18 |
| abstract_inverted_index.tasks | 9 |
| abstract_inverted_index.these | 39 |
| abstract_inverted_index.using | 139 |
| abstract_inverted_index.which | 88, 151 |
| abstract_inverted_index.(CRGU) | 82 |
| abstract_inverted_index.(GAN). | 15 |
| abstract_inverted_index.1.67M. | 221 |
| abstract_inverted_index.Demand | 178 |
| abstract_inverted_index.domain | 53 |
| abstract_inverted_index.highly | 192 |
| abstract_inverted_index.reduce | 114, 121 |
| abstract_inverted_index.signal | 27, 112 |
| abstract_inverted_index.single | 148 |
| abstract_inverted_index.speech | 7, 48 |
| abstract_inverted_index.stage, | 131 |
| abstract_inverted_index.system | 190 |
| abstract_inverted_index.within | 25, 110 |
| abstract_inverted_index.Network | 14 |
| abstract_inverted_index.address | 38 |
| abstract_inverted_index.applied | 5 |
| abstract_inverted_index.conduct | 170 |
| abstract_inverted_index.decoder | 134 |
| abstract_inverted_index.extract | 22, 98 |
| abstract_inverted_index.feature | 86, 101, 118 |
| abstract_inverted_index.improve | 34 |
| abstract_inverted_index.instead | 145 |
| abstract_inverted_index.issues, | 40 |
| abstract_inverted_index.network | 44 |
| abstract_inverted_index.outputs | 157 |
| abstract_inverted_index.remains | 19 |
| abstract_inverted_index.results | 182 |
| abstract_inverted_index.speech, | 104 |
| abstract_inverted_index.11.14dB, | 213 |
| abstract_inverted_index.CRG-MGAN | 199 |
| abstract_inverted_index.Enhanced | 78 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.achieves | 201 |
| abstract_inverted_index.complete | 100 |
| abstract_inverted_index.decoding | 130 |
| abstract_inverted_index.existing | 195 |
| abstract_inverted_index.features | 29 |
| abstract_inverted_index.function | 143 |
| abstract_inverted_index.gradient | 153 |
| abstract_inverted_index.improved | 91, 137 |
| abstract_inverted_index.prevents | 152 |
| abstract_inverted_index.process. | 168 |
| abstract_inverted_index.proposed | 46, 189 |
| abstract_inverted_index.sequence | 28 |
| abstract_inverted_index.systems. | 196 |
| abstract_inverted_index.temporal | 23, 108 |
| abstract_inverted_index.training | 35, 167 |
| abstract_inverted_index.Attention | 80 |
| abstract_inverted_index.CRG-MGAN, | 75 |
| abstract_inverted_index.CRG-MGAN. | 55 |
| abstract_inverted_index.MetricGAN | 61 |
| abstract_inverted_index.Objective | 180 |
| abstract_inverted_index.datasets. | 179 |
| abstract_inverted_index.explosion | 154 |
| abstract_inverted_index.extensive | 171 |
| abstract_inverted_index.function, | 150 |
| abstract_inverted_index.generator | 72 |
| abstract_inverted_index.improving | 162 |
| abstract_inverted_index.magnitude | 159 |
| abstract_inverted_index.sequence, | 113 |
| abstract_inverted_index.spatially | 67 |
| abstract_inverted_index.stability | 164 |
| abstract_inverted_index.structure | 135, 144 |
| abstract_inverted_index.Generative | 12 |
| abstract_inverted_index.activation | 142, 149 |
| abstract_inverted_index.attention. | 69 |
| abstract_inverted_index.complexity | 124 |
| abstract_inverted_index.relatively | 216 |
| abstract_inverted_index.stability. | 36 |
| abstract_inverted_index.structure. | 93 |
| abstract_inverted_index.two-branch | 141 |
| abstract_inverted_index.Adversarial | 13 |
| abstract_inverted_index.Recurrently | 77 |
| abstract_inverted_index.Transformer | 1, 92 |
| abstract_inverted_index.challenging | 20 |
| abstract_inverted_index.competitive | 193 |
| abstract_inverted_index.convolution | 64 |
| abstract_inverted_index.effectively | 4, 97, 156 |
| abstract_inverted_index.enhancement | 8, 49 |
| abstract_inverted_index.experiments | 172 |
| abstract_inverted_index.extraction, | 87 |
| abstract_inverted_index.information | 102 |
| abstract_inverted_index.performance | 186 |
| abstract_inverted_index.Transformer. | 127 |
| abstract_inverted_index.dependencies | 24, 109 |
| abstract_inverted_index.information, | 119, 160 |
| abstract_inverted_index.light-weight | 43 |
| abstract_inverted_index.Convolutional | 76 |
| abstract_inverted_index.Specifically, | 197 |
| abstract_inverted_index.computational | 123 |
| abstract_inverted_index.time-frequency | 52 |
| abstract_inverted_index.recurrent-augmented | 66 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.1596508 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |