Critical Analysis of Advanced Hybrid Models for Mobile Phishing Detection Through Data Mining and Machine Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4018/ijdwm.394800
Phishing through mobiles is becoming advanced, attacking the users through malware applications, SMS, and social media. Dynamic threats better the conventional detection techniques, thereby hybrid approaches integrating machine learning, deep learning, and heuristic rules are the essentials. Here the work is on mobile security utilizing AI in interaction with 5G and edge computing for detection in real time. This survey discusses ensemble learning, federated learning, blockchain, and privacy-preserving techniques for defending against adversarial attacks and limited resources. It discusses elastic defences for mobiles and explores Explainable AI and quantum machine learning for enhanced performance and explainability. The results are from peer-reviewed journals and sources (2018-2024) like IEEE, Springer, and ScienceDirect, showing a modern overview of hybrid phishing detection.
Related Topics
- Type
- article
- Language
- ng
- Landing Page
- https://doi.org/10.4018/ijdwm.394800
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4417064261
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417064261Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4018/ijdwm.394800Digital Object Identifier
- Title
-
Critical Analysis of Advanced Hybrid Models for Mobile Phishing Detection Through Data Mining and Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
ngPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-05Full publication date if available
- Authors
-
Karthik Vanna, Mosiur Rahaman, Akshat Gaurav, Varsha AryaList of authors in order
- Landing page
-
https://doi.org/10.4018/ijdwm.394800Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.4018/ijdwm.394800Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417064261 |
|---|---|
| doi | https://doi.org/10.4018/ijdwm.394800 |
| ids.doi | https://doi.org/10.4018/ijdwm.394800 |
| ids.openalex | https://openalex.org/W4417064261 |
| fwci | |
| type | article |
| title | Critical Analysis of Advanced Hybrid Models for Mobile Phishing Detection Through Data Mining and Machine Learning |
| biblio.issue | 1 |
| biblio.volume | 21 |
| biblio.last_page | 32 |
| biblio.first_page | 1 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | ng |
| locations[0].id | doi:10.4018/ijdwm.394800 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S53932126 |
| locations[0].source.issn | 1548-3924, 1548-3932 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1548-3924 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Data Warehousing and Mining |
| locations[0].source.host_organization | https://openalex.org/P4310320424 |
| locations[0].source.host_organization_name | IGI Global |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320424 |
| locations[0].source.host_organization_lineage_names | IGI Global |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Data Warehousing and Mining |
| locations[0].landing_page_url | https://doi.org/10.4018/ijdwm.394800 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5120641003 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Karthik Vanna |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143578492 |
| authorships[0].affiliations[0].raw_affiliation_string | VelTech University, India & International Center for AI and Cyber Security Research and Innovations, Asia University, Taichung, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I143578492 |
| authorships[0].institutions[0].ror | https://ror.org/038a1tp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143578492 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | Asia University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Karthik Vanna |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | VelTech University, India & International Center for AI and Cyber Security Research and Innovations, Asia University, Taichung, Taiwan |
| authorships[1].author.id | https://openalex.org/A5056061503 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0521-2080 |
| authorships[1].author.display_name | Mosiur Rahaman |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143578492 |
| authorships[1].affiliations[0].raw_affiliation_string | International Center for AI and Cyber Security Research and Innovations, Asia University, Taichung, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I143578492 |
| authorships[1].institutions[0].ror | https://ror.org/038a1tp19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143578492 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | Asia University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mosiur Rahaman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | International Center for AI and Cyber Security Research and Innovations, Asia University, Taichung, Taiwan |
| authorships[2].author.id | https://openalex.org/A5042846465 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5796-9424 |
| authorships[2].author.display_name | Akshat Gaurav |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210147267 |
| authorships[2].affiliations[0].raw_affiliation_string | Ronin Institute, USA & International Center for AI and Cyber Security Research and Innovations, Asia University, Taichung, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I4210147267 |
| authorships[2].institutions[0].ror | https://ror.org/04awze035 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210147267 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Ronin Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Akshat Gaurav |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ronin Institute, USA & International Center for AI and Cyber Security Research and Innovations, Asia University, Taichung, Taiwan |
| authorships[3].author.id | https://openalex.org/A5086803967 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7549-4429 |
| authorships[3].author.display_name | Varsha Arya |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[3].affiliations[0].raw_affiliation_string | Hong Kong Metropolitan University, Hong Kong & Center for Interdisciplinary Research, University of Petroleum and Energy Studies, Dehradun, India |
| authorships[3].institutions[0].id | https://openalex.org/I5847235 |
| authorships[3].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Varsha Arya |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hong Kong Metropolitan University, Hong Kong & Center for Interdisciplinary Research, University of Petroleum and Energy Studies, Dehradun, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.4018/ijdwm.394800 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-05T00:00:00 |
| display_name | Critical Analysis of Advanced Hybrid Models for Mobile Phishing Detection Through Data Mining and Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-06T23:14:57.273132 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4018/ijdwm.394800 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S53932126 |
| best_oa_location.source.issn | 1548-3924, 1548-3932 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1548-3924 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Data Warehousing and Mining |
| best_oa_location.source.host_organization | https://openalex.org/P4310320424 |
| best_oa_location.source.host_organization_name | IGI Global |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320424 |
| best_oa_location.source.host_organization_lineage_names | IGI Global |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Data Warehousing and Mining |
| best_oa_location.landing_page_url | https://doi.org/10.4018/ijdwm.394800 |
| primary_location.id | doi:10.4018/ijdwm.394800 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S53932126 |
| primary_location.source.issn | 1548-3924, 1548-3932 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1548-3924 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Data Warehousing and Mining |
| primary_location.source.host_organization | https://openalex.org/P4310320424 |
| primary_location.source.host_organization_name | IGI Global |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320424 |
| primary_location.source.host_organization_lineage_names | IGI Global |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Data Warehousing and Mining |
| primary_location.landing_page_url | https://doi.org/10.4018/ijdwm.394800 |
| publication_date | 2025-12-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 111 |
| abstract_inverted_index.5G | 49 |
| abstract_inverted_index.AI | 45, 86 |
| abstract_inverted_index.It | 77 |
| abstract_inverted_index.in | 46, 55 |
| abstract_inverted_index.is | 3, 40 |
| abstract_inverted_index.of | 114 |
| abstract_inverted_index.on | 41 |
| abstract_inverted_index.The | 96 |
| abstract_inverted_index.and | 13, 31, 50, 66, 74, 83, 87, 94, 102, 108 |
| abstract_inverted_index.are | 34, 98 |
| abstract_inverted_index.for | 53, 69, 81, 91 |
| abstract_inverted_index.the | 7, 19, 35, 38 |
| abstract_inverted_index.Here | 37 |
| abstract_inverted_index.SMS, | 12 |
| abstract_inverted_index.This | 58 |
| abstract_inverted_index.deep | 29 |
| abstract_inverted_index.edge | 51 |
| abstract_inverted_index.from | 99 |
| abstract_inverted_index.like | 105 |
| abstract_inverted_index.real | 56 |
| abstract_inverted_index.with | 48 |
| abstract_inverted_index.work | 39 |
| abstract_inverted_index.IEEE, | 106 |
| abstract_inverted_index.rules | 33 |
| abstract_inverted_index.time. | 57 |
| abstract_inverted_index.users | 8 |
| abstract_inverted_index.better | 18 |
| abstract_inverted_index.hybrid | 24, 115 |
| abstract_inverted_index.media. | 15 |
| abstract_inverted_index.mobile | 42 |
| abstract_inverted_index.modern | 112 |
| abstract_inverted_index.social | 14 |
| abstract_inverted_index.survey | 59 |
| abstract_inverted_index.Dynamic | 16 |
| abstract_inverted_index.against | 71 |
| abstract_inverted_index.attacks | 73 |
| abstract_inverted_index.elastic | 79 |
| abstract_inverted_index.limited | 75 |
| abstract_inverted_index.machine | 27, 89 |
| abstract_inverted_index.malware | 10 |
| abstract_inverted_index.mobiles | 2, 82 |
| abstract_inverted_index.quantum | 88 |
| abstract_inverted_index.results | 97 |
| abstract_inverted_index.showing | 110 |
| abstract_inverted_index.sources | 103 |
| abstract_inverted_index.thereby | 23 |
| abstract_inverted_index.threats | 17 |
| abstract_inverted_index.through | 1, 9 |
| abstract_inverted_index.Phishing | 0 |
| abstract_inverted_index.becoming | 4 |
| abstract_inverted_index.defences | 80 |
| abstract_inverted_index.enhanced | 92 |
| abstract_inverted_index.ensemble | 61 |
| abstract_inverted_index.explores | 84 |
| abstract_inverted_index.journals | 101 |
| abstract_inverted_index.learning | 90 |
| abstract_inverted_index.overview | 113 |
| abstract_inverted_index.phishing | 116 |
| abstract_inverted_index.security | 43 |
| abstract_inverted_index.Springer, | 107 |
| abstract_inverted_index.advanced, | 5 |
| abstract_inverted_index.attacking | 6 |
| abstract_inverted_index.computing | 52 |
| abstract_inverted_index.defending | 70 |
| abstract_inverted_index.detection | 21, 54 |
| abstract_inverted_index.discusses | 60, 78 |
| abstract_inverted_index.federated | 63 |
| abstract_inverted_index.heuristic | 32 |
| abstract_inverted_index.learning, | 28, 30, 62, 64 |
| abstract_inverted_index.utilizing | 44 |
| abstract_inverted_index.approaches | 25 |
| abstract_inverted_index.detection. | 117 |
| abstract_inverted_index.resources. | 76 |
| abstract_inverted_index.techniques | 68 |
| abstract_inverted_index.(2018-2024) | 104 |
| abstract_inverted_index.Explainable | 85 |
| abstract_inverted_index.adversarial | 72 |
| abstract_inverted_index.blockchain, | 65 |
| abstract_inverted_index.essentials. | 36 |
| abstract_inverted_index.integrating | 26 |
| abstract_inverted_index.interaction | 47 |
| abstract_inverted_index.performance | 93 |
| abstract_inverted_index.techniques, | 22 |
| abstract_inverted_index.conventional | 20 |
| abstract_inverted_index.applications, | 11 |
| abstract_inverted_index.peer-reviewed | 100 |
| abstract_inverted_index.ScienceDirect, | 109 |
| abstract_inverted_index.explainability. | 95 |
| abstract_inverted_index.privacy-preserving | 67 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |