Crop Disease Prediction using Deep Learning Techniques - A Review Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.14445/23488387/ijcse-v9i4p104
In agriculture, AI is bringing about a revolution by replacing traditional methods with more efficient ones and contributing to a better world. Artificial Intelligence and machine learning enable the development and implementation of devices that can identify and control plants, weeds, pests, and diseases through remote sensing. Plant disease lowers the quantity and quality of food, fiber, and biofuel crops, important to the Indian economy. In addition to reducing waste, using Deep learning technologies can increase quality and speed up market access for farmers. Here, we summarize recent crop disease detection research papers. Multiple deep learning algorithms demonstrate the current solutions for different crop disease diagnoses in this research. I hope this report will be useful to other crop disease detection researchers.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.14445/23488387/ijcse-v9i4p104
- https://www.internationaljournalssrg.org/../IJCSE/2022/Volume9-Issue4/IJCSE-V9I4P104.pdf
- OA Status
- diamond
- Cited By
- 10
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280530471
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280530471Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.14445/23488387/ijcse-v9i4p104Digital Object Identifier
- Title
-
Crop Disease Prediction using Deep Learning Techniques - A ReviewWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-25Full publication date if available
- Authors
-
Gargi Sharma, Gourav ShrivastavaList of authors in order
- Landing page
-
https://doi.org/10.14445/23488387/ijcse-v9i4p104Publisher landing page
- PDF URL
-
https://www.internationaljournalssrg.org/../IJCSE/2022/Volume9-Issue4/IJCSE-V9I4P104.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.internationaljournalssrg.org/../IJCSE/2022/Volume9-Issue4/IJCSE-V9I4P104.pdfDirect OA link when available
- Concepts
-
Deep learning, Agricultural engineering, Agriculture, Artificial intelligence, Crop, Quality (philosophy), Computer science, Biotechnology, Machine learning, Engineering, Agronomy, Geography, Biology, Philosophy, Archaeology, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 9Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280530471 |
|---|---|
| doi | https://doi.org/10.14445/23488387/ijcse-v9i4p104 |
| ids.doi | https://doi.org/10.14445/23488387/ijcse-v9i4p104 |
| ids.openalex | https://openalex.org/W4280530471 |
| fwci | 1.77701345 |
| type | review |
| title | Crop Disease Prediction using Deep Learning Techniques - A Review |
| biblio.issue | 4 |
| biblio.volume | 9 |
| biblio.last_page | 28 |
| biblio.first_page | 23 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9940999746322632 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9217000007629395 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6438868641853333 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C88463610 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5600935816764832 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[1].display_name | Agricultural engineering |
| concepts[2].id | https://openalex.org/C118518473 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5547109842300415 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11451 |
| concepts[2].display_name | Agriculture |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5246142148971558 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C137580998 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5003712177276611 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q235352 |
| concepts[4].display_name | Crop |
| concepts[5].id | https://openalex.org/C2779530757 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4760996103286743 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[5].display_name | Quality (philosophy) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4739522933959961 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C150903083 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4218599796295166 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7108 |
| concepts[7].display_name | Biotechnology |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4152734875679016 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.23618197441101074 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C6557445 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2000044286251068 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[10].display_name | Agronomy |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12654903531074524 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10050708055496216 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C166957645 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[14].display_name | Archaeology |
| concepts[15].id | https://openalex.org/C111472728 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[15].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.6438868641853333 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[1].score | 0.5600935816764832 |
| keywords[1].display_name | Agricultural engineering |
| keywords[2].id | https://openalex.org/keywords/agriculture |
| keywords[2].score | 0.5547109842300415 |
| keywords[2].display_name | Agriculture |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5246142148971558 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/crop |
| keywords[4].score | 0.5003712177276611 |
| keywords[4].display_name | Crop |
| keywords[5].id | https://openalex.org/keywords/quality |
| keywords[5].score | 0.4760996103286743 |
| keywords[5].display_name | Quality (philosophy) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4739522933959961 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/biotechnology |
| keywords[7].score | 0.4218599796295166 |
| keywords[7].display_name | Biotechnology |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4152734875679016 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.23618197441101074 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/agronomy |
| keywords[10].score | 0.2000044286251068 |
| keywords[10].display_name | Agronomy |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.12654903531074524 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.10050708055496216 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | doi:10.14445/23488387/ijcse-v9i4p104 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210214753 |
| locations[0].source.issn | 2348-8387 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2348-8387 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Computer Science and Engineering |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.internationaljournalssrg.org/../IJCSE/2022/Volume9-Issue4/IJCSE-V9I4P104.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computer Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.14445/23488387/ijcse-v9i4p104 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5019253609 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8666-7820 |
| authorships[0].author.display_name | Gargi Sharma |
| authorships[0].affiliations[0].raw_affiliation_string | School of Advanced Computing, Sage University Bhopal, M.P, India. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gargi Sharma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Advanced Computing, Sage University Bhopal, M.P, India. |
| authorships[1].author.id | https://openalex.org/A5042708765 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1777-0533 |
| authorships[1].author.display_name | Gourav Shrivastava |
| authorships[1].affiliations[0].raw_affiliation_string | School of Advanced Computing, Sage University Bhopal, M.P, India. |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Gourav Shrivastava |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Advanced Computing, Sage University Bhopal, M.P, India. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.internationaljournalssrg.org/../IJCSE/2022/Volume9-Issue4/IJCSE-V9I4P104.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Crop Disease Prediction using Deep Learning Techniques - A Review |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9940999746322632 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W4380075502, https://openalex.org/W4223943233, https://openalex.org/W4312200629, https://openalex.org/W4360585206, https://openalex.org/W4364306694, https://openalex.org/W4380086463, https://openalex.org/W4225161397, https://openalex.org/W3014300295, https://openalex.org/W3164822677, https://openalex.org/W2795261237 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 9 |
| locations_count | 1 |
| best_oa_location.id | doi:10.14445/23488387/ijcse-v9i4p104 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210214753 |
| best_oa_location.source.issn | 2348-8387 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2348-8387 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Computer Science and Engineering |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.internationaljournalssrg.org/../IJCSE/2022/Volume9-Issue4/IJCSE-V9I4P104.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computer Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.14445/23488387/ijcse-v9i4p104 |
| primary_location.id | doi:10.14445/23488387/ijcse-v9i4p104 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210214753 |
| primary_location.source.issn | 2348-8387 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2348-8387 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Computer Science and Engineering |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.internationaljournalssrg.org/../IJCSE/2022/Volume9-Issue4/IJCSE-V9I4P104.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computer Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.14445/23488387/ijcse-v9i4p104 |
| publication_date | 2022-04-25 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3132328762, https://openalex.org/W3013403470, https://openalex.org/W3193425446, https://openalex.org/W3088186260, https://openalex.org/W3206899080, https://openalex.org/W3049506553, https://openalex.org/W3033864984, https://openalex.org/W2966432859, https://openalex.org/W2921403460, https://openalex.org/W2912398505, https://openalex.org/W2927613875, https://openalex.org/W3093041678, https://openalex.org/W2981513382, https://openalex.org/W2473156356, https://openalex.org/W3130071898, https://openalex.org/W2976292222, https://openalex.org/W2982381523, https://openalex.org/W3008195198, https://openalex.org/W2924476266, https://openalex.org/W3140854437, https://openalex.org/W3191230654, https://openalex.org/W2942231644, https://openalex.org/W3194730353, https://openalex.org/W3093991637 |
| referenced_works_count | 24 |
| abstract_inverted_index.I | 109 |
| abstract_inverted_index.a | 6, 19 |
| abstract_inverted_index.AI | 2 |
| abstract_inverted_index.In | 0, 65 |
| abstract_inverted_index.be | 114 |
| abstract_inverted_index.by | 8 |
| abstract_inverted_index.in | 106 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 32, 54 |
| abstract_inverted_index.to | 18, 61, 67, 116 |
| abstract_inverted_index.up | 79 |
| abstract_inverted_index.we | 85 |
| abstract_inverted_index.and | 16, 24, 30, 37, 42, 52, 57, 77 |
| abstract_inverted_index.can | 35, 74 |
| abstract_inverted_index.for | 82, 101 |
| abstract_inverted_index.the | 28, 50, 62, 98 |
| abstract_inverted_index.Deep | 71 |
| abstract_inverted_index.crop | 88, 103, 118 |
| abstract_inverted_index.deep | 94 |
| abstract_inverted_index.hope | 110 |
| abstract_inverted_index.more | 13 |
| abstract_inverted_index.ones | 15 |
| abstract_inverted_index.that | 34 |
| abstract_inverted_index.this | 107, 111 |
| abstract_inverted_index.will | 113 |
| abstract_inverted_index.with | 12 |
| abstract_inverted_index.Here, | 84 |
| abstract_inverted_index.Plant | 47 |
| abstract_inverted_index.about | 5 |
| abstract_inverted_index.food, | 55 |
| abstract_inverted_index.other | 117 |
| abstract_inverted_index.speed | 78 |
| abstract_inverted_index.using | 70 |
| abstract_inverted_index.Indian | 63 |
| abstract_inverted_index.access | 81 |
| abstract_inverted_index.better | 20 |
| abstract_inverted_index.crops, | 59 |
| abstract_inverted_index.enable | 27 |
| abstract_inverted_index.fiber, | 56 |
| abstract_inverted_index.lowers | 49 |
| abstract_inverted_index.market | 80 |
| abstract_inverted_index.pests, | 41 |
| abstract_inverted_index.recent | 87 |
| abstract_inverted_index.remote | 45 |
| abstract_inverted_index.report | 112 |
| abstract_inverted_index.useful | 115 |
| abstract_inverted_index.waste, | 69 |
| abstract_inverted_index.weeds, | 40 |
| abstract_inverted_index.world. | 21 |
| abstract_inverted_index.biofuel | 58 |
| abstract_inverted_index.control | 38 |
| abstract_inverted_index.current | 99 |
| abstract_inverted_index.devices | 33 |
| abstract_inverted_index.disease | 48, 89, 104, 119 |
| abstract_inverted_index.machine | 25 |
| abstract_inverted_index.methods | 11 |
| abstract_inverted_index.papers. | 92 |
| abstract_inverted_index.plants, | 39 |
| abstract_inverted_index.quality | 53, 76 |
| abstract_inverted_index.through | 44 |
| abstract_inverted_index.Multiple | 93 |
| abstract_inverted_index.addition | 66 |
| abstract_inverted_index.bringing | 4 |
| abstract_inverted_index.diseases | 43 |
| abstract_inverted_index.economy. | 64 |
| abstract_inverted_index.farmers. | 83 |
| abstract_inverted_index.identify | 36 |
| abstract_inverted_index.increase | 75 |
| abstract_inverted_index.learning | 26, 72, 95 |
| abstract_inverted_index.quantity | 51 |
| abstract_inverted_index.reducing | 68 |
| abstract_inverted_index.research | 91 |
| abstract_inverted_index.sensing. | 46 |
| abstract_inverted_index.detection | 90, 120 |
| abstract_inverted_index.diagnoses | 105 |
| abstract_inverted_index.different | 102 |
| abstract_inverted_index.efficient | 14 |
| abstract_inverted_index.important | 60 |
| abstract_inverted_index.replacing | 9 |
| abstract_inverted_index.research. | 108 |
| abstract_inverted_index.solutions | 100 |
| abstract_inverted_index.summarize | 86 |
| abstract_inverted_index.Artificial | 22 |
| abstract_inverted_index.algorithms | 96 |
| abstract_inverted_index.revolution | 7 |
| abstract_inverted_index.demonstrate | 97 |
| abstract_inverted_index.development | 29 |
| abstract_inverted_index.traditional | 10 |
| abstract_inverted_index.Intelligence | 23 |
| abstract_inverted_index.agriculture, | 1 |
| abstract_inverted_index.contributing | 17 |
| abstract_inverted_index.researchers. | 121 |
| abstract_inverted_index.technologies | 73 |
| abstract_inverted_index.implementation | 31 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.87444795 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |