Cross Layer Optimization Using AI/ML Assisted Federated Edge Learning in 6G Networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202511.0751.v1
This paper introduces a novel methodology that integrates 6G wireless Federated Edge Learning (FEEL) frameworks with optimization strategies spanning from the MAC layer to the Physical layer. In the context of mobile edge computing, ensuring robust channel estimation within the 6G network slicing paradigm presents critical challenges, particularly in managing data retransmissions. Inaccurate updates from distributed 6G devices can undermine the reliability of Federated Learning (FL), affecting its overall performance. To address this, we propose an AI/ML assisted algorithm for global optimization in FL-based 6G networks, where the decision-making process leverages radial basis functions (RBF) to assess options based on learned preferences rather than relying on direct evaluations of the objective function.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.20944/preprints202511.0751.v1
- https://www.preprints.org/frontend/manuscript/5c7a0a0a45fd90216c6e9584f9de124e/download_pub
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416231897
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416231897Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202511.0751.v1Digital Object Identifier
- Title
-
Cross Layer Optimization Using AI/ML Assisted Federated Edge Learning in 6G NetworksWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-11Full publication date if available
- Authors
-
Spiros Louvros, A. K. Pandey, Yashesh BuchList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202511.0751.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/frontend/manuscript/5c7a0a0a45fd90216c6e9584f9de124e/download_pubDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/frontend/manuscript/5c7a0a0a45fd90216c6e9584f9de124e/download_pubDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416231897 |
|---|---|
| doi | https://doi.org/10.20944/preprints202511.0751.v1 |
| ids.doi | https://doi.org/10.20944/preprints202511.0751.v1 |
| ids.openalex | https://openalex.org/W4416231897 |
| fwci | |
| type | article |
| title | Cross Layer Optimization Using AI/ML Assisted Federated Edge Learning in 6G Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.20944/preprints202511.0751.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/frontend/manuscript/5c7a0a0a45fd90216c6e9584f9de124e/download_pub |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202511.0751.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5027926638 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8165-1304 |
| authorships[0].author.display_name | Spiros Louvros |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Spyridon Louvros |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101849196 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4420-7874 |
| authorships[1].author.display_name | A. K. Pandey |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | AnupKumar Pandey |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5120401921 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yashesh Buch |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yashesh Buch |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/frontend/manuscript/5c7a0a0a45fd90216c6e9584f9de124e/download_pub |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-14T00:00:00 |
| display_name | Cross Layer Optimization Using AI/ML Assisted Federated Edge Learning in 6G Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T08:47:09.149924 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202511.0751.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/frontend/manuscript/5c7a0a0a45fd90216c6e9584f9de124e/download_pub |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202511.0751.v1 |
| primary_location.id | doi:10.20944/preprints202511.0751.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/frontend/manuscript/5c7a0a0a45fd90216c6e9584f9de124e/download_pub |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202511.0751.v1 |
| publication_date | 2025-11-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.6G | 8, 40, 56, 84 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.To | 70 |
| abstract_inverted_index.an | 75 |
| abstract_inverted_index.in | 48, 82 |
| abstract_inverted_index.of | 30, 62, 108 |
| abstract_inverted_index.on | 99, 105 |
| abstract_inverted_index.to | 23, 95 |
| abstract_inverted_index.we | 73 |
| abstract_inverted_index.MAC | 21 |
| abstract_inverted_index.can | 58 |
| abstract_inverted_index.for | 79 |
| abstract_inverted_index.its | 67 |
| abstract_inverted_index.the | 20, 24, 28, 39, 60, 87, 109 |
| abstract_inverted_index.Edge | 11 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 50 |
| abstract_inverted_index.edge | 32 |
| abstract_inverted_index.from | 19, 54 |
| abstract_inverted_index.than | 103 |
| abstract_inverted_index.that | 6 |
| abstract_inverted_index.with | 15 |
| abstract_inverted_index.(FL), | 65 |
| abstract_inverted_index.(RBF) | 94 |
| abstract_inverted_index.AI/ML | 76 |
| abstract_inverted_index.based | 98 |
| abstract_inverted_index.basis | 92 |
| abstract_inverted_index.layer | 22 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.this, | 72 |
| abstract_inverted_index.where | 86 |
| abstract_inverted_index.(FEEL) | 13 |
| abstract_inverted_index.assess | 96 |
| abstract_inverted_index.direct | 106 |
| abstract_inverted_index.global | 80 |
| abstract_inverted_index.layer. | 26 |
| abstract_inverted_index.mobile | 31 |
| abstract_inverted_index.radial | 91 |
| abstract_inverted_index.rather | 102 |
| abstract_inverted_index.robust | 35 |
| abstract_inverted_index.within | 38 |
| abstract_inverted_index.address | 71 |
| abstract_inverted_index.channel | 36 |
| abstract_inverted_index.context | 29 |
| abstract_inverted_index.devices | 57 |
| abstract_inverted_index.learned | 100 |
| abstract_inverted_index.network | 41 |
| abstract_inverted_index.options | 97 |
| abstract_inverted_index.overall | 68 |
| abstract_inverted_index.process | 89 |
| abstract_inverted_index.propose | 74 |
| abstract_inverted_index.relying | 104 |
| abstract_inverted_index.slicing | 42 |
| abstract_inverted_index.updates | 53 |
| abstract_inverted_index.FL-based | 83 |
| abstract_inverted_index.Learning | 12, 64 |
| abstract_inverted_index.Physical | 25 |
| abstract_inverted_index.assisted | 77 |
| abstract_inverted_index.critical | 45 |
| abstract_inverted_index.ensuring | 34 |
| abstract_inverted_index.managing | 49 |
| abstract_inverted_index.paradigm | 43 |
| abstract_inverted_index.presents | 44 |
| abstract_inverted_index.spanning | 18 |
| abstract_inverted_index.wireless | 9 |
| abstract_inverted_index.Federated | 10, 63 |
| abstract_inverted_index.affecting | 66 |
| abstract_inverted_index.algorithm | 78 |
| abstract_inverted_index.function. | 111 |
| abstract_inverted_index.functions | 93 |
| abstract_inverted_index.leverages | 90 |
| abstract_inverted_index.networks, | 85 |
| abstract_inverted_index.objective | 110 |
| abstract_inverted_index.undermine | 59 |
| abstract_inverted_index.Inaccurate | 52 |
| abstract_inverted_index.computing, | 33 |
| abstract_inverted_index.estimation | 37 |
| abstract_inverted_index.frameworks | 14 |
| abstract_inverted_index.integrates | 7 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.strategies | 17 |
| abstract_inverted_index.challenges, | 46 |
| abstract_inverted_index.distributed | 55 |
| abstract_inverted_index.evaluations | 107 |
| abstract_inverted_index.methodology | 5 |
| abstract_inverted_index.preferences | 101 |
| abstract_inverted_index.reliability | 61 |
| abstract_inverted_index.optimization | 16, 81 |
| abstract_inverted_index.particularly | 47 |
| abstract_inverted_index.performance. | 69 |
| abstract_inverted_index.decision-making | 88 |
| abstract_inverted_index.retransmissions. | 51 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |