Cross-Lingual Transfer with Typological Constraints: A Case Study in Low-Resource NLP Article Swipe
Cross-lingual transfer learning has become a cornerstone of multilingual NLP, yet performance disparities persist for low-resource languages, particularly those with typologically divergent features from high-resource source languages. This paper investigates how explicit typological constraints— derived from databases like the World Atlas of Language Structures (WALS) Dryer and Haspelmath [2013]—can guide parameter sharing and alignment in multilingual models. Building on recent work in typologically informed neural architectures Ponti et al. [2020], Bjerva and Augenstein [2021], we propose a novel adapter-based framework that conditions layer-wise transformations on syntactic and morphological features. Our experiments on three low-resource languages (Arapaho, Uyghur, and Tsez) demonstrate that typological guidance reduces negative interference and improves transfer accuracy by up to 12% compared to unconstrained baselines. We further analyze the interplay between feature granularity and model performance, drawing on insights from linguistic typology Bickel and Nichols [2017] and low-resource NLP Joshi et al. [2020].
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31224/4536
- https://engrxiv.org/preprint/download/4536/7882/6502
- OA Status
- gold
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409645147
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409645147Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31224/4536Digital Object Identifier
- Title
-
Cross-Lingual Transfer with Typological Constraints: A Case Study in Low-Resource NLPWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-21Full publication date if available
- Authors
-
Rosa María Rodríguez JiménezList of authors in order
- Landing page
-
https://doi.org/10.31224/4536Publisher landing page
- PDF URL
-
https://engrxiv.org/preprint/download/4536/7882/6502Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://engrxiv.org/preprint/download/4536/7882/6502Direct OA link when available
- Concepts
-
Natural language processing, Artificial intelligence, Computer science, Resource (disambiguation), Transfer of learning, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409645147 |
|---|---|
| doi | https://doi.org/10.31224/4536 |
| ids.doi | https://doi.org/10.31224/4536 |
| ids.openalex | https://openalex.org/W4409645147 |
| fwci | 0.0 |
| type | preprint |
| title | Cross-Lingual Transfer with Typological Constraints: A Case Study in Low-Resource NLP |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9678000211715698 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T12031 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9606000185012817 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech and dialogue systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C204321447 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6208351254463196 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[0].display_name | Natural language processing |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.601201057434082 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5888648629188538 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C206345919 |
| concepts[3].level | 2 |
| concepts[3].score | 0.488633930683136 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[3].display_name | Resource (disambiguation) |
| concepts[4].id | https://openalex.org/C150899416 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4371398389339447 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[4].display_name | Transfer of learning |
| concepts[5].id | https://openalex.org/C31258907 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[5].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/natural-language-processing |
| keywords[0].score | 0.6208351254463196 |
| keywords[0].display_name | Natural language processing |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.601201057434082 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5888648629188538 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/resource |
| keywords[3].score | 0.488633930683136 |
| keywords[3].display_name | Resource (disambiguation) |
| keywords[4].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[4].score | 0.4371398389339447 |
| keywords[4].display_name | Transfer of learning |
| language | en |
| locations[0].id | doi:10.31224/4536 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://engrxiv.org/preprint/download/4536/7882/6502 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31224/4536 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090166954 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0467-2886 |
| authorships[0].author.display_name | Rosa María Rodríguez Jiménez |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Raul Mateo Jimenez |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://engrxiv.org/preprint/download/4536/7882/6502 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Cross-Lingual Transfer with Typological Constraints: A Case Study in Low-Resource NLP |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31224/4536 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://engrxiv.org/preprint/download/4536/7882/6502 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31224/4536 |
| primary_location.id | doi:10.31224/4536 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://engrxiv.org/preprint/download/4536/7882/6502 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31224/4536 |
| publication_date | 2025-04-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3198189804, https://openalex.org/W2945618485, https://openalex.org/W2983040767, https://openalex.org/W2896457183, https://openalex.org/W765434669, https://openalex.org/W1484082930, https://openalex.org/W3153116717, https://openalex.org/W6759579507, https://openalex.org/W3017311573, https://openalex.org/W3204846429, https://openalex.org/W2922565841, https://openalex.org/W2043074264, https://openalex.org/W2908510526, https://openalex.org/W3206010442, https://openalex.org/W2740900542, https://openalex.org/W6779771702, https://openalex.org/W3152609875 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 5, 76 |
| abstract_inverted_index.We | 118 |
| abstract_inverted_index.by | 110 |
| abstract_inverted_index.et | 67, 143 |
| abstract_inverted_index.in | 54, 61 |
| abstract_inverted_index.of | 7, 41 |
| abstract_inverted_index.on | 58, 84, 91, 130 |
| abstract_inverted_index.to | 112, 115 |
| abstract_inverted_index.up | 111 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.12% | 113 |
| abstract_inverted_index.NLP | 141 |
| abstract_inverted_index.Our | 89 |
| abstract_inverted_index.al. | 68, 144 |
| abstract_inverted_index.and | 46, 52, 71, 86, 97, 106, 126, 136, 139 |
| abstract_inverted_index.for | 14 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.how | 30 |
| abstract_inverted_index.the | 38, 121 |
| abstract_inverted_index.yet | 10 |
| abstract_inverted_index.NLP, | 9 |
| abstract_inverted_index.This | 27 |
| abstract_inverted_index.from | 23, 35, 132 |
| abstract_inverted_index.like | 37 |
| abstract_inverted_index.that | 80, 100 |
| abstract_inverted_index.with | 19 |
| abstract_inverted_index.work | 60 |
| abstract_inverted_index.Atlas | 40 |
| abstract_inverted_index.Dryer | 45 |
| abstract_inverted_index.Joshi | 142 |
| abstract_inverted_index.Ponti | 66 |
| abstract_inverted_index.Tsez) | 98 |
| abstract_inverted_index.World | 39 |
| abstract_inverted_index.guide | 49 |
| abstract_inverted_index.model | 127 |
| abstract_inverted_index.novel | 77 |
| abstract_inverted_index.paper | 28 |
| abstract_inverted_index.those | 18 |
| abstract_inverted_index.three | 92 |
| abstract_inverted_index.(WALS) | 44 |
| abstract_inverted_index.Bickel | 135 |
| abstract_inverted_index.Bjerva | 70 |
| abstract_inverted_index.[2017] | 138 |
| abstract_inverted_index.become | 4 |
| abstract_inverted_index.neural | 64 |
| abstract_inverted_index.recent | 59 |
| abstract_inverted_index.source | 25 |
| abstract_inverted_index.Nichols | 137 |
| abstract_inverted_index.Uyghur, | 96 |
| abstract_inverted_index.[2020], | 69 |
| abstract_inverted_index.[2020]. | 145 |
| abstract_inverted_index.[2021], | 73 |
| abstract_inverted_index.analyze | 120 |
| abstract_inverted_index.between | 123 |
| abstract_inverted_index.derived | 34 |
| abstract_inverted_index.drawing | 129 |
| abstract_inverted_index.feature | 124 |
| abstract_inverted_index.further | 119 |
| abstract_inverted_index.models. | 56 |
| abstract_inverted_index.persist | 13 |
| abstract_inverted_index.propose | 75 |
| abstract_inverted_index.reduces | 103 |
| abstract_inverted_index.sharing | 51 |
| abstract_inverted_index.Building | 57 |
| abstract_inverted_index.Language | 42 |
| abstract_inverted_index.accuracy | 109 |
| abstract_inverted_index.compared | 114 |
| abstract_inverted_index.explicit | 31 |
| abstract_inverted_index.features | 22 |
| abstract_inverted_index.guidance | 102 |
| abstract_inverted_index.improves | 107 |
| abstract_inverted_index.informed | 63 |
| abstract_inverted_index.insights | 131 |
| abstract_inverted_index.learning | 2 |
| abstract_inverted_index.negative | 104 |
| abstract_inverted_index.transfer | 1, 108 |
| abstract_inverted_index.typology | 134 |
| abstract_inverted_index.(Arapaho, | 95 |
| abstract_inverted_index.alignment | 53 |
| abstract_inverted_index.databases | 36 |
| abstract_inverted_index.divergent | 21 |
| abstract_inverted_index.features. | 88 |
| abstract_inverted_index.framework | 79 |
| abstract_inverted_index.interplay | 122 |
| abstract_inverted_index.languages | 94 |
| abstract_inverted_index.parameter | 50 |
| abstract_inverted_index.syntactic | 85 |
| abstract_inverted_index.Augenstein | 72 |
| abstract_inverted_index.Haspelmath | 47 |
| abstract_inverted_index.Structures | 43 |
| abstract_inverted_index.baselines. | 117 |
| abstract_inverted_index.conditions | 81 |
| abstract_inverted_index.languages, | 16 |
| abstract_inverted_index.languages. | 26 |
| abstract_inverted_index.layer-wise | 82 |
| abstract_inverted_index.linguistic | 133 |
| abstract_inverted_index.cornerstone | 6 |
| abstract_inverted_index.demonstrate | 99 |
| abstract_inverted_index.disparities | 12 |
| abstract_inverted_index.experiments | 90 |
| abstract_inverted_index.granularity | 125 |
| abstract_inverted_index.performance | 11 |
| abstract_inverted_index.typological | 32, 101 |
| abstract_inverted_index.[2013]—can | 48 |
| abstract_inverted_index.interference | 105 |
| abstract_inverted_index.investigates | 29 |
| abstract_inverted_index.low-resource | 15, 93, 140 |
| abstract_inverted_index.multilingual | 8, 55 |
| abstract_inverted_index.particularly | 17 |
| abstract_inverted_index.performance, | 128 |
| abstract_inverted_index.Cross-lingual | 0 |
| abstract_inverted_index.adapter-based | 78 |
| abstract_inverted_index.architectures | 65 |
| abstract_inverted_index.high-resource | 24 |
| abstract_inverted_index.morphological | 87 |
| abstract_inverted_index.typologically | 20, 62 |
| abstract_inverted_index.unconstrained | 116 |
| abstract_inverted_index.constraints— | 33 |
| abstract_inverted_index.transformations | 83 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5090166954 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.05430448 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |