Cross-Modal Data Fusion via Vision-Language Model for Crop Disease Recognition Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25134096
Crop diseases pose a significant threat to agricultural productivity and global food security. Timely and accurate disease identification is crucial for improving crop yield and quality. While most existing deep learning-based methods focus primarily on image datasets for disease recognition, they often overlook the complementary role of textual features in enhancing visual understanding. To address this problem, we proposed a cross-modal data fusion via a vision-language model for crop disease recognition. Our approach leverages the Zhipu.ai multi-model to generate comprehensive textual descriptions of crop leaf diseases, including global description, local lesion description, and color-texture description. These descriptions are encoded into feature vectors, while an image encoder extracts image features. A cross-attention mechanism then iteratively fuses multimodal features across multiple layers, and a classification prediction module generates classification probabilities. Extensive experiments on the Soybean Disease, AI Challenge 2018, and PlantVillage datasets demonstrate that our method outperforms state-of-the-art image-only approaches with higher accuracy and fewer parameters. Specifically, with only 1.14M model parameters, our model achieves a 98.74%, 87.64% and 99.08% recognition accuracy on the three datasets, respectively. The results highlight the effectiveness of cross-modal learning in leveraging both visual and textual cues for precise and efficient disease recognition, offering a scalable solution for crop disease recognition.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25134096
- https://www.mdpi.com/1424-8220/25/13/4096/pdf?version=1751295775
- OA Status
- gold
- Cited By
- 2
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411801849
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411801849Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25134096Digital Object Identifier
- Title
-
Cross-Modal Data Fusion via Vision-Language Model for Crop Disease RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-30Full publication date if available
- Authors
-
Wenjie Liu, WU Guo-qing, Han Wang, Fuji RenList of authors in order
- Landing page
-
https://doi.org/10.3390/s25134096Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/13/4096/pdf?version=1751295775Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/13/4096/pdf?version=1751295775Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Feature (linguistics), Pattern recognition (psychology), Modal, Identification (biology), Linguistics, Botany, Chemistry, Polymer chemistry, Biology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411801849 |
|---|---|
| doi | https://doi.org/10.3390/s25134096 |
| ids.doi | https://doi.org/10.3390/s25134096 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40648350 |
| ids.openalex | https://openalex.org/W4411801849 |
| fwci | 8.90864391 |
| mesh[0].qualifier_ui | Q000382 |
| mesh[0].descriptor_ui | D018556 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | microbiology |
| mesh[0].descriptor_name | Crops, Agricultural |
| mesh[1].qualifier_ui | Q000145 |
| mesh[1].descriptor_ui | D010935 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | classification |
| mesh[1].descriptor_name | Plant Diseases |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000077321 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Deep Learning |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D007091 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Image Processing, Computer-Assisted |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D013025 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Glycine max |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000465 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Algorithms |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D018515 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Plant Leaves |
| mesh[7].qualifier_ui | Q000382 |
| mesh[7].descriptor_ui | D018556 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | microbiology |
| mesh[7].descriptor_name | Crops, Agricultural |
| mesh[8].qualifier_ui | Q000145 |
| mesh[8].descriptor_ui | D010935 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | classification |
| mesh[8].descriptor_name | Plant Diseases |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000077321 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Deep Learning |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D007091 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Image Processing, Computer-Assisted |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D013025 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Glycine max |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000465 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Algorithms |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D018515 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Plant Leaves |
| mesh[14].qualifier_ui | Q000382 |
| mesh[14].descriptor_ui | D018556 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | microbiology |
| mesh[14].descriptor_name | Crops, Agricultural |
| mesh[15].qualifier_ui | Q000145 |
| mesh[15].descriptor_ui | D010935 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | classification |
| mesh[15].descriptor_name | Plant Diseases |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000077321 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Deep Learning |
| mesh[17].qualifier_ui | Q000379 |
| mesh[17].descriptor_ui | D007091 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | methods |
| mesh[17].descriptor_name | Image Processing, Computer-Assisted |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D013025 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Glycine max |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000465 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Algorithms |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D018515 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Plant Leaves |
| type | article |
| title | Cross-Modal Data Fusion via Vision-Language Model for Crop Disease Recognition |
| awards[0].id | https://openalex.org/G2764215623 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62301287 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 13 |
| biblio.volume | 25 |
| biblio.last_page | 4096 |
| biblio.first_page | 4096 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T12660 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Plant Disease Management Techniques |
| topics[2].id | https://openalex.org/T10494 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9925000071525574 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Plant Virus Research Studies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7275195121765137 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.701377809047699 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5557982921600342 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5066183805465698 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4769414961338043 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C71139939 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4521099627017975 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[5].display_name | Modal |
| concepts[6].id | https://openalex.org/C116834253 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4356883764266968 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[6].display_name | Identification (biology) |
| concepts[7].id | https://openalex.org/C41895202 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[7].display_name | Linguistics |
| concepts[8].id | https://openalex.org/C59822182 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[8].display_name | Botany |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C188027245 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[10].display_name | Polymer chemistry |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7275195121765137 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.701377809047699 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5557982921600342 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.5066183805465698 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.4769414961338043 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/modal |
| keywords[5].score | 0.4521099627017975 |
| keywords[5].display_name | Modal |
| keywords[6].id | https://openalex.org/keywords/identification |
| keywords[6].score | 0.4356883764266968 |
| keywords[6].display_name | Identification (biology) |
| language | en |
| locations[0].id | doi:10.3390/s25134096 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/13/4096/pdf?version=1751295775 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25134096 |
| locations[1].id | pmid:40648350 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40648350 |
| locations[2].id | pmh:oai:doaj.org/article:479d3b881893440ebafacc394021a7f6 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 13, p 4096 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/479d3b881893440ebafacc394021a7f6 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12251865 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12251865 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100428672 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2099-5012 |
| authorships[0].author.display_name | Wenjie Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I199305430 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China |
| authorships[0].institutions[0].id | https://openalex.org/I199305430 |
| authorships[0].institutions[0].ror | https://ror.org/02afcvw97 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I199305430 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nantong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenjie Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China |
| authorships[1].author.id | https://openalex.org/A5100747717 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0583-8200 |
| authorships[1].author.display_name | WU Guo-qing |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Nantong Institute of Technology, Nantong 226002, China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guoqing Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical Engineering, Nantong Institute of Technology, Nantong 226002, China |
| authorships[2].author.id | https://openalex.org/A5005806482 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1771-8134 |
| authorships[2].author.display_name | Han Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I199305430 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China |
| authorships[2].institutions[0].id | https://openalex.org/I199305430 |
| authorships[2].institutions[0].ror | https://ror.org/02afcvw97 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I199305430 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nantong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Han Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China |
| authorships[3].author.id | https://openalex.org/A5071943346 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4860-9184 |
| authorships[3].author.display_name | Fuji Ren |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[3].institutions[0].id | https://openalex.org/I150229711 |
| authorships[3].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fuji Ren |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/13/4096/pdf?version=1751295775 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Cross-Modal Data Fusion via Vision-Language Model for Crop Disease Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2898732673, https://openalex.org/W2379392295, https://openalex.org/W3160965418, https://openalex.org/W2410053581, https://openalex.org/W613940353, https://openalex.org/W2383658677, https://openalex.org/W3123203398, https://openalex.org/W2320915480, https://openalex.org/W3147584709, https://openalex.org/W2362990116 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25134096 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/13/4096/pdf?version=1751295775 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25134096 |
| primary_location.id | doi:10.3390/s25134096 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/13/4096/pdf?version=1751295775 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25134096 |
| publication_date | 2025-06-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2913500366, https://openalex.org/W2889540278, https://openalex.org/W4291018086, https://openalex.org/W4403017997, https://openalex.org/W4398216873, https://openalex.org/W4321178429, https://openalex.org/W4409262417, https://openalex.org/W4206736393, https://openalex.org/W2938959907, https://openalex.org/W2911433502, https://openalex.org/W3020100137, https://openalex.org/W3014047578, https://openalex.org/W2987984071, https://openalex.org/W2995504058, https://openalex.org/W3142834936, https://openalex.org/W2963125010, https://openalex.org/W2883780447, https://openalex.org/W2963163009, https://openalex.org/W3035414587, https://openalex.org/W4281846758, https://openalex.org/W3118987644, https://openalex.org/W4402857827, https://openalex.org/W3193570173, https://openalex.org/W4402197396, https://openalex.org/W4398144714, https://openalex.org/W4403757489, https://openalex.org/W3135367836, https://openalex.org/W4386076215, https://openalex.org/W4226182655, https://openalex.org/W4318718936, https://openalex.org/W6790978476, https://openalex.org/W4225672218, https://openalex.org/W4308101374, https://openalex.org/W2194775991, https://openalex.org/W2962858109 |
| referenced_works_count | 35 |
| abstract_inverted_index.A | 109 |
| abstract_inverted_index.a | 3, 59, 64, 121, 163, 197 |
| abstract_inverted_index.AI | 134 |
| abstract_inverted_index.To | 53 |
| abstract_inverted_index.an | 103 |
| abstract_inverted_index.in | 49, 183 |
| abstract_inverted_index.is | 18 |
| abstract_inverted_index.of | 46, 82, 180 |
| abstract_inverted_index.on | 34, 130, 170 |
| abstract_inverted_index.to | 6, 77 |
| abstract_inverted_index.we | 57 |
| abstract_inverted_index.Our | 71 |
| abstract_inverted_index.The | 175 |
| abstract_inverted_index.and | 9, 14, 24, 92, 120, 137, 151, 166, 187, 192 |
| abstract_inverted_index.are | 97 |
| abstract_inverted_index.for | 20, 37, 67, 190, 200 |
| abstract_inverted_index.our | 142, 160 |
| abstract_inverted_index.the | 43, 74, 131, 171, 178 |
| abstract_inverted_index.via | 63 |
| abstract_inverted_index.Crop | 0 |
| abstract_inverted_index.both | 185 |
| abstract_inverted_index.crop | 22, 68, 83, 201 |
| abstract_inverted_index.cues | 189 |
| abstract_inverted_index.data | 61 |
| abstract_inverted_index.deep | 29 |
| abstract_inverted_index.food | 11 |
| abstract_inverted_index.into | 99 |
| abstract_inverted_index.leaf | 84 |
| abstract_inverted_index.most | 27 |
| abstract_inverted_index.only | 156 |
| abstract_inverted_index.pose | 2 |
| abstract_inverted_index.role | 45 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.then | 112 |
| abstract_inverted_index.they | 40 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.with | 148, 155 |
| abstract_inverted_index.1.14M | 157 |
| abstract_inverted_index.2018, | 136 |
| abstract_inverted_index.These | 95 |
| abstract_inverted_index.While | 26 |
| abstract_inverted_index.fewer | 152 |
| abstract_inverted_index.focus | 32 |
| abstract_inverted_index.fuses | 114 |
| abstract_inverted_index.image | 35, 104, 107 |
| abstract_inverted_index.local | 89 |
| abstract_inverted_index.model | 66, 158, 161 |
| abstract_inverted_index.often | 41 |
| abstract_inverted_index.three | 172 |
| abstract_inverted_index.while | 102 |
| abstract_inverted_index.yield | 23 |
| abstract_inverted_index.87.64% | 165 |
| abstract_inverted_index.99.08% | 167 |
| abstract_inverted_index.Timely | 13 |
| abstract_inverted_index.across | 117 |
| abstract_inverted_index.fusion | 62 |
| abstract_inverted_index.global | 10, 87 |
| abstract_inverted_index.higher | 149 |
| abstract_inverted_index.lesion | 90 |
| abstract_inverted_index.method | 143 |
| abstract_inverted_index.module | 124 |
| abstract_inverted_index.threat | 5 |
| abstract_inverted_index.visual | 51, 186 |
| abstract_inverted_index.98.74%, | 164 |
| abstract_inverted_index.Soybean | 132 |
| abstract_inverted_index.address | 54 |
| abstract_inverted_index.crucial | 19 |
| abstract_inverted_index.disease | 16, 38, 69, 194, 202 |
| abstract_inverted_index.encoded | 98 |
| abstract_inverted_index.encoder | 105 |
| abstract_inverted_index.feature | 100 |
| abstract_inverted_index.layers, | 119 |
| abstract_inverted_index.methods | 31 |
| abstract_inverted_index.precise | 191 |
| abstract_inverted_index.results | 176 |
| abstract_inverted_index.textual | 47, 80, 188 |
| abstract_inverted_index.Disease, | 133 |
| abstract_inverted_index.Zhipu.ai | 75 |
| abstract_inverted_index.accuracy | 150, 169 |
| abstract_inverted_index.accurate | 15 |
| abstract_inverted_index.achieves | 162 |
| abstract_inverted_index.approach | 72 |
| abstract_inverted_index.datasets | 36, 139 |
| abstract_inverted_index.diseases | 1 |
| abstract_inverted_index.existing | 28 |
| abstract_inverted_index.extracts | 106 |
| abstract_inverted_index.features | 48, 116 |
| abstract_inverted_index.generate | 78 |
| abstract_inverted_index.learning | 182 |
| abstract_inverted_index.multiple | 118 |
| abstract_inverted_index.offering | 196 |
| abstract_inverted_index.overlook | 42 |
| abstract_inverted_index.problem, | 56 |
| abstract_inverted_index.proposed | 58 |
| abstract_inverted_index.quality. | 25 |
| abstract_inverted_index.scalable | 198 |
| abstract_inverted_index.solution | 199 |
| abstract_inverted_index.vectors, | 101 |
| abstract_inverted_index.Challenge | 135 |
| abstract_inverted_index.Extensive | 128 |
| abstract_inverted_index.datasets, | 173 |
| abstract_inverted_index.diseases, | 85 |
| abstract_inverted_index.efficient | 193 |
| abstract_inverted_index.enhancing | 50 |
| abstract_inverted_index.features. | 108 |
| abstract_inverted_index.generates | 125 |
| abstract_inverted_index.highlight | 177 |
| abstract_inverted_index.improving | 21 |
| abstract_inverted_index.including | 86 |
| abstract_inverted_index.leverages | 73 |
| abstract_inverted_index.mechanism | 111 |
| abstract_inverted_index.primarily | 33 |
| abstract_inverted_index.security. | 12 |
| abstract_inverted_index.approaches | 147 |
| abstract_inverted_index.image-only | 146 |
| abstract_inverted_index.leveraging | 184 |
| abstract_inverted_index.multimodal | 115 |
| abstract_inverted_index.prediction | 123 |
| abstract_inverted_index.cross-modal | 60, 181 |
| abstract_inverted_index.demonstrate | 140 |
| abstract_inverted_index.experiments | 129 |
| abstract_inverted_index.iteratively | 113 |
| abstract_inverted_index.multi-model | 76 |
| abstract_inverted_index.outperforms | 144 |
| abstract_inverted_index.parameters, | 159 |
| abstract_inverted_index.parameters. | 153 |
| abstract_inverted_index.recognition | 168 |
| abstract_inverted_index.significant | 4 |
| abstract_inverted_index.PlantVillage | 138 |
| abstract_inverted_index.agricultural | 7 |
| abstract_inverted_index.description, | 88, 91 |
| abstract_inverted_index.description. | 94 |
| abstract_inverted_index.descriptions | 81, 96 |
| abstract_inverted_index.productivity | 8 |
| abstract_inverted_index.recognition, | 39, 195 |
| abstract_inverted_index.recognition. | 70, 203 |
| abstract_inverted_index.Specifically, | 154 |
| abstract_inverted_index.color-texture | 93 |
| abstract_inverted_index.complementary | 44 |
| abstract_inverted_index.comprehensive | 79 |
| abstract_inverted_index.effectiveness | 179 |
| abstract_inverted_index.respectively. | 174 |
| abstract_inverted_index.classification | 122, 126 |
| abstract_inverted_index.identification | 17 |
| abstract_inverted_index.learning-based | 30 |
| abstract_inverted_index.probabilities. | 127 |
| abstract_inverted_index.understanding. | 52 |
| abstract_inverted_index.cross-attention | 110 |
| abstract_inverted_index.vision-language | 65 |
| abstract_inverted_index.state-of-the-art | 145 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.95638316 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |