Cross-Modal Feature Representation Learning and Label Graph Mining in a Residual Multi-Attentional CNN-LSTM Network for Multi-Label Aerial Scene Classification Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14102424
The results of aerial scene classification can provide valuable information for urban planning and land monitoring. In this specific field, there are always a number of object-level semantic classes in big remote-sensing pictures. Complex label-space makes it hard to detect all the targets and perceive corresponding semantics in the typical scene, thereby weakening the sensing ability. Even worse, the preparation of a labeled dataset for the training of deep networks is more difficult due to multiple labels. In order to mine object-level visual features and make good use of label dependency, we propose a novel framework in this article, namely a Cross-Modal Representation Learning and Label Graph Mining-based Residual Multi-Attentional CNN-LSTM framework (CM-GM framework). In this framework, a residual multi-attentional convolutional neural network is developed to extract object-level image features. Moreover, semantic labels are embedded by language model and then form a label graph which can be further mapped by advanced graph convolutional networks (GCN). With these cross-modal feature representations (image, graph and text), object-level visual features will be enhanced and aligned to GCN-based label embeddings. After that, aligned visual signals are fed into a bi-LSTM subnetwork according to the built label graph. The CM-GM framework is able to map both visual features and graph-based label representations into a correlated space appropriately, using label dependency efficiently, thus improving the LSTM predictor’s ability. Experimental results show that the proposed CM-GM framework is able to achieve higher accuracy on many multi-label benchmark datasets in remote sensing field.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14102424
- https://www.mdpi.com/2072-4292/14/10/2424/pdf?version=1652926719
- OA Status
- gold
- Cited By
- 16
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280597585
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280597585Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14102424Digital Object Identifier
- Title
-
Cross-Modal Feature Representation Learning and Label Graph Mining in a Residual Multi-Attentional CNN-LSTM Network for Multi-Label Aerial Scene ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-18Full publication date if available
- Authors
-
Peng Li, Peng Chen, Dezheng ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14102424Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/10/2424/pdf?version=1652926719Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/10/2424/pdf?version=1652926719Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Graph, Convolutional neural network, Pattern recognition (psychology), Residual, Feature learning, Modal, Semantics (computer science), Subnetwork, Feature (linguistics), Theoretical computer science, Algorithm, Programming language, Philosophy, Chemistry, Computer security, Linguistics, Polymer chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 6, 2023: 4, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280597585 |
|---|---|
| doi | https://doi.org/10.3390/rs14102424 |
| ids.doi | https://doi.org/10.3390/rs14102424 |
| ids.openalex | https://openalex.org/W4280597585 |
| fwci | 2.23764839 |
| type | article |
| title | Cross-Modal Feature Representation Learning and Label Graph Mining in a Residual Multi-Attentional CNN-LSTM Network for Multi-Label Aerial Scene Classification |
| awards[0].id | https://openalex.org/G8210159129 |
| awards[0].funder_id | https://openalex.org/F4320334010 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2019BFG02009 |
| awards[0].funder_display_name | Key Research and Development Program of Ningxia |
| biblio.issue | 10 |
| biblio.volume | 14 |
| biblio.last_page | 2424 |
| biblio.first_page | 2424 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9866999983787537 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| funders[0].id | https://openalex.org/F4320334010 |
| funders[0].ror | |
| funders[0].display_name | Key Research and Development Program of Ningxia |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7997548580169678 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6934198141098022 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6399103403091431 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5886552333831787 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5770671367645264 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C155512373 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5718712210655212 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[5].display_name | Residual |
| concepts[6].id | https://openalex.org/C59404180 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5140074491500854 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[6].display_name | Feature learning |
| concepts[7].id | https://openalex.org/C71139939 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5001635551452637 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[7].display_name | Modal |
| concepts[8].id | https://openalex.org/C184337299 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49100998044013977 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[8].display_name | Semantics (computer science) |
| concepts[9].id | https://openalex.org/C2780186347 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44558513164520264 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11414 |
| concepts[9].display_name | Subnetwork |
| concepts[10].id | https://openalex.org/C2776401178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4267445206642151 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[10].display_name | Feature (linguistics) |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1121116578578949 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| concepts[16].id | https://openalex.org/C38652104 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[16].display_name | Computer security |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C188027245 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[18].display_name | Polymer chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7997548580169678 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6934198141098022 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.6399103403091431 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5886552333831787 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5770671367645264 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/residual |
| keywords[5].score | 0.5718712210655212 |
| keywords[5].display_name | Residual |
| keywords[6].id | https://openalex.org/keywords/feature-learning |
| keywords[6].score | 0.5140074491500854 |
| keywords[6].display_name | Feature learning |
| keywords[7].id | https://openalex.org/keywords/modal |
| keywords[7].score | 0.5001635551452637 |
| keywords[7].display_name | Modal |
| keywords[8].id | https://openalex.org/keywords/semantics |
| keywords[8].score | 0.49100998044013977 |
| keywords[8].display_name | Semantics (computer science) |
| keywords[9].id | https://openalex.org/keywords/subnetwork |
| keywords[9].score | 0.44558513164520264 |
| keywords[9].display_name | Subnetwork |
| keywords[10].id | https://openalex.org/keywords/feature |
| keywords[10].score | 0.4267445206642151 |
| keywords[10].display_name | Feature (linguistics) |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.1121116578578949 |
| keywords[11].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.3390/rs14102424 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/10/2424/pdf?version=1652926719 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14102424 |
| locations[1].id | pmh:oai:doaj.org/article:c3796979a6b148899455f4c4a3a81c3f |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 10, p 2424 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/c3796979a6b148899455f4c4a3a81c3f |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/10/2424/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 10; Pages: 2424 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14102424 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100726749 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5453-7389 |
| authorships[0].author.display_name | Peng Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[0].affiliations[1].raw_affiliation_string | Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China |
| authorships[0].institutions[0].id | https://openalex.org/I92403157 |
| authorships[0].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peng Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[1].author.id | https://openalex.org/A5100399184 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0519-169X |
| authorships[1].author.display_name | Peng Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I917184967 |
| authorships[1].affiliations[0].raw_affiliation_string | Financial Technology Innovation Department, Postal Savings Bank of China, Beijing 100808, China |
| authorships[1].institutions[0].id | https://openalex.org/I917184967 |
| authorships[1].institutions[0].ror | https://ror.org/02mt4s337 |
| authorships[1].institutions[0].type | other |
| authorships[1].institutions[0].lineage | https://openalex.org/I917184967 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Bank of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peng Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Financial Technology Innovation Department, Postal Savings Bank of China, Beijing 100808, China |
| authorships[2].author.id | https://openalex.org/A5024869142 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3456-5259 |
| authorships[2].author.display_name | Dezheng Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| authorships[2].affiliations[1].raw_affiliation_string | Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China |
| authorships[2].institutions[0].id | https://openalex.org/I92403157 |
| authorships[2].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Dezheng Zhang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/10/2424/pdf?version=1652926719 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Cross-Modal Feature Representation Learning and Label Graph Mining in a Residual Multi-Attentional CNN-LSTM Network for Multi-Label Aerial Scene Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2060724872, https://openalex.org/W2082094785, https://openalex.org/W2202198356, https://openalex.org/W3087203342, https://openalex.org/W2377184161, https://openalex.org/W228984114, https://openalex.org/W4226360758, https://openalex.org/W2810783540, https://openalex.org/W2964117779, https://openalex.org/W4390871823 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14102424 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/10/2424/pdf?version=1652926719 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14102424 |
| primary_location.id | doi:10.3390/rs14102424 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/10/2424/pdf?version=1652926719 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14102424 |
| publication_date | 2022-05-18 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2944019945, https://openalex.org/W2967257500, https://openalex.org/W2963150697, https://openalex.org/W2963037989, https://openalex.org/W2194775991, https://openalex.org/W2163605009, https://openalex.org/W2772352260, https://openalex.org/W2829067510, https://openalex.org/W2715220489, https://openalex.org/W2969792713, https://openalex.org/W2114315281, https://openalex.org/W2118712128, https://openalex.org/W2102705755, https://openalex.org/W2963745697, https://openalex.org/W2932399282, https://openalex.org/W1980038761, https://openalex.org/W2766938848, https://openalex.org/W2173027866, https://openalex.org/W2064675550, https://openalex.org/W2773003563, https://openalex.org/W2513787030, https://openalex.org/W2914885528, https://openalex.org/W2151103935, https://openalex.org/W1566135517, https://openalex.org/W2121915926, https://openalex.org/W7075742223, https://openalex.org/W2937749267, https://openalex.org/W2005112351, https://openalex.org/W2052684427, https://openalex.org/W6656416933, https://openalex.org/W2069525662, https://openalex.org/W2024106491, https://openalex.org/W2112796928, https://openalex.org/W2097117768, https://openalex.org/W2793268137, https://openalex.org/W6618372016, https://openalex.org/W2752782242, https://openalex.org/W2955058313, https://openalex.org/W2884585870, https://openalex.org/W2963495494, https://openalex.org/W2963052338, https://openalex.org/W2579933644, https://openalex.org/W2884821995, https://openalex.org/W6630044934, https://openalex.org/W2116341502, https://openalex.org/W2139906443, https://openalex.org/W2157331557, https://openalex.org/W2468907370, https://openalex.org/W2519887557, https://openalex.org/W2756203131, https://openalex.org/W2154851992, https://openalex.org/W2962756421, https://openalex.org/W2127795553, https://openalex.org/W2619383789, https://openalex.org/W2031458230, https://openalex.org/W1665214252, https://openalex.org/W6678470764, https://openalex.org/W2950700180, https://openalex.org/W2602837914, https://openalex.org/W1514027499, https://openalex.org/W2605572715, https://openalex.org/W2986943971, https://openalex.org/W1861492603, https://openalex.org/W3104097132, https://openalex.org/W3103410140, https://openalex.org/W3103720336 |
| referenced_works_count | 66 |
| abstract_inverted_index.a | 23, 61, 93, 100, 117, 141, 184, 208 |
| abstract_inverted_index.In | 16, 77, 114 |
| abstract_inverted_index.be | 146, 168 |
| abstract_inverted_index.by | 135, 149 |
| abstract_inverted_index.in | 29, 47, 96, 241 |
| abstract_inverted_index.is | 70, 123, 196, 230 |
| abstract_inverted_index.it | 36 |
| abstract_inverted_index.of | 2, 25, 60, 67, 88 |
| abstract_inverted_index.on | 236 |
| abstract_inverted_index.to | 38, 74, 79, 125, 172, 188, 198, 232 |
| abstract_inverted_index.we | 91 |
| abstract_inverted_index.The | 0, 193 |
| abstract_inverted_index.all | 40 |
| abstract_inverted_index.and | 13, 43, 84, 104, 138, 162, 170, 203 |
| abstract_inverted_index.are | 21, 133, 181 |
| abstract_inverted_index.big | 30 |
| abstract_inverted_index.can | 6, 145 |
| abstract_inverted_index.due | 73 |
| abstract_inverted_index.fed | 182 |
| abstract_inverted_index.for | 10, 64 |
| abstract_inverted_index.map | 199 |
| abstract_inverted_index.the | 41, 48, 53, 58, 65, 189, 218, 226 |
| abstract_inverted_index.use | 87 |
| abstract_inverted_index.Even | 56 |
| abstract_inverted_index.LSTM | 219 |
| abstract_inverted_index.With | 155 |
| abstract_inverted_index.able | 197, 231 |
| abstract_inverted_index.both | 200 |
| abstract_inverted_index.deep | 68 |
| abstract_inverted_index.form | 140 |
| abstract_inverted_index.good | 86 |
| abstract_inverted_index.hard | 37 |
| abstract_inverted_index.into | 183, 207 |
| abstract_inverted_index.land | 14 |
| abstract_inverted_index.make | 85 |
| abstract_inverted_index.many | 237 |
| abstract_inverted_index.mine | 80 |
| abstract_inverted_index.more | 71 |
| abstract_inverted_index.show | 224 |
| abstract_inverted_index.that | 225 |
| abstract_inverted_index.then | 139 |
| abstract_inverted_index.this | 17, 97, 115 |
| abstract_inverted_index.thus | 216 |
| abstract_inverted_index.will | 167 |
| abstract_inverted_index.After | 176 |
| abstract_inverted_index.CM-GM | 194, 228 |
| abstract_inverted_index.Graph | 106 |
| abstract_inverted_index.Label | 105 |
| abstract_inverted_index.built | 190 |
| abstract_inverted_index.graph | 143, 151, 161 |
| abstract_inverted_index.image | 128 |
| abstract_inverted_index.label | 89, 142, 174, 191, 205, 213 |
| abstract_inverted_index.makes | 35 |
| abstract_inverted_index.model | 137 |
| abstract_inverted_index.novel | 94 |
| abstract_inverted_index.order | 78 |
| abstract_inverted_index.scene | 4 |
| abstract_inverted_index.space | 210 |
| abstract_inverted_index.that, | 177 |
| abstract_inverted_index.there | 20 |
| abstract_inverted_index.these | 156 |
| abstract_inverted_index.urban | 11 |
| abstract_inverted_index.using | 212 |
| abstract_inverted_index.which | 144 |
| abstract_inverted_index.(CM-GM | 112 |
| abstract_inverted_index.(GCN). | 154 |
| abstract_inverted_index.aerial | 3 |
| abstract_inverted_index.always | 22 |
| abstract_inverted_index.detect | 39 |
| abstract_inverted_index.field, | 19 |
| abstract_inverted_index.field. | 244 |
| abstract_inverted_index.graph. | 192 |
| abstract_inverted_index.higher | 234 |
| abstract_inverted_index.labels | 132 |
| abstract_inverted_index.mapped | 148 |
| abstract_inverted_index.namely | 99 |
| abstract_inverted_index.neural | 121 |
| abstract_inverted_index.number | 24 |
| abstract_inverted_index.remote | 242 |
| abstract_inverted_index.scene, | 50 |
| abstract_inverted_index.text), | 163 |
| abstract_inverted_index.visual | 82, 165, 179, 201 |
| abstract_inverted_index.worse, | 57 |
| abstract_inverted_index.(image, | 160 |
| abstract_inverted_index.Complex | 33 |
| abstract_inverted_index.achieve | 233 |
| abstract_inverted_index.aligned | 171, 178 |
| abstract_inverted_index.bi-LSTM | 185 |
| abstract_inverted_index.classes | 28 |
| abstract_inverted_index.dataset | 63 |
| abstract_inverted_index.extract | 126 |
| abstract_inverted_index.feature | 158 |
| abstract_inverted_index.further | 147 |
| abstract_inverted_index.labeled | 62 |
| abstract_inverted_index.labels. | 76 |
| abstract_inverted_index.network | 122 |
| abstract_inverted_index.propose | 92 |
| abstract_inverted_index.provide | 7 |
| abstract_inverted_index.results | 1, 223 |
| abstract_inverted_index.sensing | 54, 243 |
| abstract_inverted_index.signals | 180 |
| abstract_inverted_index.targets | 42 |
| abstract_inverted_index.thereby | 51 |
| abstract_inverted_index.typical | 49 |
| abstract_inverted_index.CNN-LSTM | 110 |
| abstract_inverted_index.Learning | 103 |
| abstract_inverted_index.Residual | 108 |
| abstract_inverted_index.ability. | 55, 221 |
| abstract_inverted_index.accuracy | 235 |
| abstract_inverted_index.advanced | 150 |
| abstract_inverted_index.article, | 98 |
| abstract_inverted_index.datasets | 240 |
| abstract_inverted_index.embedded | 134 |
| abstract_inverted_index.enhanced | 169 |
| abstract_inverted_index.features | 83, 166, 202 |
| abstract_inverted_index.language | 136 |
| abstract_inverted_index.multiple | 75 |
| abstract_inverted_index.networks | 69, 153 |
| abstract_inverted_index.perceive | 44 |
| abstract_inverted_index.planning | 12 |
| abstract_inverted_index.proposed | 227 |
| abstract_inverted_index.residual | 118 |
| abstract_inverted_index.semantic | 27, 131 |
| abstract_inverted_index.specific | 18 |
| abstract_inverted_index.training | 66 |
| abstract_inverted_index.valuable | 8 |
| abstract_inverted_index.GCN-based | 173 |
| abstract_inverted_index.Moreover, | 130 |
| abstract_inverted_index.according | 187 |
| abstract_inverted_index.benchmark | 239 |
| abstract_inverted_index.developed | 124 |
| abstract_inverted_index.difficult | 72 |
| abstract_inverted_index.features. | 129 |
| abstract_inverted_index.framework | 95, 111, 195, 229 |
| abstract_inverted_index.improving | 217 |
| abstract_inverted_index.pictures. | 32 |
| abstract_inverted_index.semantics | 46 |
| abstract_inverted_index.weakening | 52 |
| abstract_inverted_index.correlated | 209 |
| abstract_inverted_index.dependency | 214 |
| abstract_inverted_index.framework, | 116 |
| abstract_inverted_index.subnetwork | 186 |
| abstract_inverted_index.Cross-Modal | 101 |
| abstract_inverted_index.cross-modal | 157 |
| abstract_inverted_index.dependency, | 90 |
| abstract_inverted_index.embeddings. | 175 |
| abstract_inverted_index.framework). | 113 |
| abstract_inverted_index.graph-based | 204 |
| abstract_inverted_index.information | 9 |
| abstract_inverted_index.label-space | 34 |
| abstract_inverted_index.monitoring. | 15 |
| abstract_inverted_index.multi-label | 238 |
| abstract_inverted_index.preparation | 59 |
| abstract_inverted_index.Experimental | 222 |
| abstract_inverted_index.Mining-based | 107 |
| abstract_inverted_index.efficiently, | 215 |
| abstract_inverted_index.object-level | 26, 81, 127, 164 |
| abstract_inverted_index.convolutional | 120, 152 |
| abstract_inverted_index.corresponding | 45 |
| abstract_inverted_index.predictor’s | 220 |
| abstract_inverted_index.Representation | 102 |
| abstract_inverted_index.appropriately, | 211 |
| abstract_inverted_index.classification | 5 |
| abstract_inverted_index.remote-sensing | 31 |
| abstract_inverted_index.representations | 159, 206 |
| abstract_inverted_index.Multi-Attentional | 109 |
| abstract_inverted_index.multi-attentional | 119 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5024869142 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I92403157 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.86711833 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |