Cross-Relation Characterization of Knowledge Networks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.15741
Knowledge networks have become increasingly important as a changing repository of data which can be represented, studied and modeled by using complex networks concepts and methodologies. Here we report a study of knowledge networks corresponding to the areas of Physics and Theology, obtained from the Wikipedia and taken at two different dates separated by 4 years. The respective two versions of these networks were characterized in terms of their respective cross-relation signatures, being summarized in terms of modification indices obtained for each of the nodes that are preserved among the two versions. The proposed methodology is first evaluated on Erdos-Renyi (ER) and Barabasi-Albert model (BA) networks, before being tested on the knowledge networks obtained from the Wikipedia respectively to the areas of Physics and Theology. In the former study, it has been observed that the nodes at the core and periphery of both types of theoretical models yielded similar modification indices within these two groups of nodes, but with distinct values when taken across these two groups. The study of the Physics and Theology networks indicated that these two networks have signatures respectively similar to those of the BA and ER models, as well as that higher modification values being obtained for the periphery nodes, as compared to the respective core nodes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.15741
- https://arxiv.org/pdf/2306.15741
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382603131
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382603131Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.15741Digital Object Identifier
- Title
-
Cross-Relation Characterization of Knowledge NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-27Full publication date if available
- Authors
-
Eric K. Tokuda, Renaud Lambiotte, Luciano da Fontoura CostaList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.15741Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.15741Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.15741Direct OA link when available
- Concepts
-
Relation (database), Core (optical fiber), Computer science, Characterization (materials science), Complex network, Theoretical computer science, Mathematics, Combinatorics, Physics, Data mining, Telecommunications, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382603131 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.15741 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.15741 |
| ids.openalex | https://openalex.org/W4382603131 |
| fwci | |
| type | preprint |
| title | Cross-Relation Characterization of Knowledge Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10064 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Complex Network Analysis Techniques |
| topics[1].id | https://openalex.org/T12592 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9782000184059143 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Opinion Dynamics and Social Influence |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C25343380 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7891821265220642 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[0].display_name | Relation (database) |
| concepts[1].id | https://openalex.org/C2164484 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6329335570335388 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5170150 |
| concepts[1].display_name | Core (optical fiber) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4751600921154022 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2780841128 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4428148567676544 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5073781 |
| concepts[3].display_name | Characterization (materials science) |
| concepts[4].id | https://openalex.org/C34947359 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4295315146446228 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q665189 |
| concepts[4].display_name | Complex network |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3681854009628296 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.36121779680252075 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C114614502 |
| concepts[7].level | 1 |
| concepts[7].score | 0.299200177192688 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[7].display_name | Combinatorics |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.23532608151435852 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16458174586296082 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C76155785 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07092693448066711 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[10].display_name | Telecommunications |
| concepts[11].id | https://openalex.org/C120665830 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[11].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/relation |
| keywords[0].score | 0.7891821265220642 |
| keywords[0].display_name | Relation (database) |
| keywords[1].id | https://openalex.org/keywords/core |
| keywords[1].score | 0.6329335570335388 |
| keywords[1].display_name | Core (optical fiber) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4751600921154022 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/characterization |
| keywords[3].score | 0.4428148567676544 |
| keywords[3].display_name | Characterization (materials science) |
| keywords[4].id | https://openalex.org/keywords/complex-network |
| keywords[4].score | 0.4295315146446228 |
| keywords[4].display_name | Complex network |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.3681854009628296 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.36121779680252075 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/combinatorics |
| keywords[7].score | 0.299200177192688 |
| keywords[7].display_name | Combinatorics |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.23532608151435852 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.16458174586296082 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/telecommunications |
| keywords[10].score | 0.07092693448066711 |
| keywords[10].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.15741 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.15741 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.15741 |
| locations[1].id | doi:10.48550/arxiv.2306.15741 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.15741 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5014336297 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6159-2500 |
| authorships[0].author.display_name | Eric K. Tokuda |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tokuda, Eric K. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5034372799 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0583-4595 |
| authorships[1].author.display_name | Renaud Lambiotte |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lambiotte, Renaud |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5005669749 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5203-4366 |
| authorships[2].author.display_name | Luciano da Fontoura Costa |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Costa, Luciano da F. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.15741 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Cross-Relation Characterization of Knowledge Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10064 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Complex Network Analysis Techniques |
| related_works | https://openalex.org/W3107994849, https://openalex.org/W4234874385, https://openalex.org/W4247143848, https://openalex.org/W2009883749, https://openalex.org/W2735573198, https://openalex.org/W29442446, https://openalex.org/W2323648130, https://openalex.org/W2157140558, https://openalex.org/W2378782423, https://openalex.org/W330727063 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.15741 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.15741 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.15741 |
| primary_location.id | pmh:oai:arXiv.org:2306.15741 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.15741 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.15741 |
| publication_date | 2023-06-27 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 54 |
| abstract_inverted_index.a | 7, 29 |
| abstract_inverted_index.BA | 188 |
| abstract_inverted_index.ER | 190 |
| abstract_inverted_index.In | 125 |
| abstract_inverted_index.as | 6, 192, 194, 205 |
| abstract_inverted_index.at | 48, 136 |
| abstract_inverted_index.be | 14 |
| abstract_inverted_index.by | 19, 53 |
| abstract_inverted_index.in | 65, 74 |
| abstract_inverted_index.is | 95 |
| abstract_inverted_index.it | 129 |
| abstract_inverted_index.of | 10, 31, 38, 60, 67, 76, 82, 121, 141, 144, 155, 169, 186 |
| abstract_inverted_index.on | 98, 109 |
| abstract_inverted_index.to | 35, 118, 184, 207 |
| abstract_inverted_index.we | 27 |
| abstract_inverted_index.The | 56, 92, 167 |
| abstract_inverted_index.and | 17, 24, 40, 46, 101, 123, 139, 172, 189 |
| abstract_inverted_index.are | 86 |
| abstract_inverted_index.but | 157 |
| abstract_inverted_index.can | 13 |
| abstract_inverted_index.for | 80, 201 |
| abstract_inverted_index.has | 130 |
| abstract_inverted_index.the | 36, 44, 83, 89, 110, 115, 119, 126, 134, 137, 170, 187, 202, 208 |
| abstract_inverted_index.two | 49, 58, 90, 153, 165, 178 |
| abstract_inverted_index.(BA) | 104 |
| abstract_inverted_index.(ER) | 100 |
| abstract_inverted_index.Here | 26 |
| abstract_inverted_index.been | 131 |
| abstract_inverted_index.both | 142 |
| abstract_inverted_index.core | 138, 210 |
| abstract_inverted_index.data | 11 |
| abstract_inverted_index.each | 81 |
| abstract_inverted_index.from | 43, 114 |
| abstract_inverted_index.have | 2, 180 |
| abstract_inverted_index.that | 85, 133, 176, 195 |
| abstract_inverted_index.well | 193 |
| abstract_inverted_index.were | 63 |
| abstract_inverted_index.when | 161 |
| abstract_inverted_index.with | 158 |
| abstract_inverted_index.among | 88 |
| abstract_inverted_index.areas | 37, 120 |
| abstract_inverted_index.being | 72, 107, 199 |
| abstract_inverted_index.dates | 51 |
| abstract_inverted_index.first | 96 |
| abstract_inverted_index.model | 103 |
| abstract_inverted_index.nodes | 84, 135 |
| abstract_inverted_index.study | 30, 168 |
| abstract_inverted_index.taken | 47, 162 |
| abstract_inverted_index.terms | 66, 75 |
| abstract_inverted_index.their | 68 |
| abstract_inverted_index.these | 61, 152, 164, 177 |
| abstract_inverted_index.those | 185 |
| abstract_inverted_index.types | 143 |
| abstract_inverted_index.using | 20 |
| abstract_inverted_index.which | 12 |
| abstract_inverted_index.across | 163 |
| abstract_inverted_index.become | 3 |
| abstract_inverted_index.before | 106 |
| abstract_inverted_index.former | 127 |
| abstract_inverted_index.groups | 154 |
| abstract_inverted_index.higher | 196 |
| abstract_inverted_index.models | 146 |
| abstract_inverted_index.nodes, | 156, 204 |
| abstract_inverted_index.nodes. | 211 |
| abstract_inverted_index.report | 28 |
| abstract_inverted_index.study, | 128 |
| abstract_inverted_index.tested | 108 |
| abstract_inverted_index.values | 160, 198 |
| abstract_inverted_index.within | 151 |
| abstract_inverted_index.years. | 55 |
| abstract_inverted_index.Physics | 39, 122, 171 |
| abstract_inverted_index.complex | 21 |
| abstract_inverted_index.groups. | 166 |
| abstract_inverted_index.indices | 78, 150 |
| abstract_inverted_index.modeled | 18 |
| abstract_inverted_index.models, | 191 |
| abstract_inverted_index.similar | 148, 183 |
| abstract_inverted_index.studied | 16 |
| abstract_inverted_index.yielded | 147 |
| abstract_inverted_index.Theology | 173 |
| abstract_inverted_index.changing | 8 |
| abstract_inverted_index.compared | 206 |
| abstract_inverted_index.concepts | 23 |
| abstract_inverted_index.distinct | 159 |
| abstract_inverted_index.networks | 1, 22, 33, 62, 112, 174, 179 |
| abstract_inverted_index.observed | 132 |
| abstract_inverted_index.obtained | 42, 79, 113, 200 |
| abstract_inverted_index.proposed | 93 |
| abstract_inverted_index.versions | 59 |
| abstract_inverted_index.Knowledge | 0 |
| abstract_inverted_index.Theology, | 41 |
| abstract_inverted_index.Theology. | 124 |
| abstract_inverted_index.Wikipedia | 45, 116 |
| abstract_inverted_index.different | 50 |
| abstract_inverted_index.evaluated | 97 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.indicated | 175 |
| abstract_inverted_index.knowledge | 32, 111 |
| abstract_inverted_index.networks, | 105 |
| abstract_inverted_index.periphery | 140, 203 |
| abstract_inverted_index.preserved | 87 |
| abstract_inverted_index.separated | 52 |
| abstract_inverted_index.versions. | 91 |
| abstract_inverted_index.repository | 9 |
| abstract_inverted_index.respective | 57, 69, 209 |
| abstract_inverted_index.signatures | 181 |
| abstract_inverted_index.summarized | 73 |
| abstract_inverted_index.Erdos-Renyi | 99 |
| abstract_inverted_index.methodology | 94 |
| abstract_inverted_index.signatures, | 71 |
| abstract_inverted_index.theoretical | 145 |
| abstract_inverted_index.increasingly | 4 |
| abstract_inverted_index.modification | 77, 149, 197 |
| abstract_inverted_index.represented, | 15 |
| abstract_inverted_index.respectively | 117, 182 |
| abstract_inverted_index.characterized | 64 |
| abstract_inverted_index.corresponding | 34 |
| abstract_inverted_index.cross-relation | 70 |
| abstract_inverted_index.methodologies. | 25 |
| abstract_inverted_index.Barabasi-Albert | 102 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |