Cross-validation of an artificial intelligence tool for fracture classification and localization on conventional radiography in Dutch population Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s13244-025-02034-1
Objectives The aim of this study is to validate the effectiveness of an AI tool trained on Indian data in a Dutch medical center and to assess its ability to classify and localize fractures. Methods Conventional radiographs acquired between January 2019 and November 2022 were analyzed using a multitask deep neural network. The tool, trained on Indian data, identified and localized fractures in 17 body parts. The reference standard was based on radiology reports resulting from routine clinical workflow and confirmed by an experienced musculoskeletal radiologist. The analysis included both patient-wise and fracture-wise evaluations, employing binary and Intersection over Union (IoU) metrics to assess fracture detection and localization accuracy. Results In total, 14,311 radiographs (median age, 48 years (range 18–98), 7265 male) were analyzed and categorized by body parts; clavicle, shoulder, humerus, elbow, forearm, wrist, hand and finger, pelvis, hip, femur, knee, lower leg, ankle, foot and toe. 4156/14,311 (29%) had fractures. The AI tool demonstrated overall patient-wise sensitivity, specificity, and AUC of 87.1% (95% CI: 86.1–88.1%), 87.1% (95% CI: 86.4–87.7%), and 0.92 (95% CI: 0.91–0.93), respectively. Fracture detection rate was 60% overall, ranging from 7% for rib fractures to 90% for clavicle fractures. Conclusions This study validates a fracture detection AI tool on a Western-European dataset, originally trained on Indian data. While classification performance is robust on real clinical data, fracture-wise analysis reveals variability in localization accuracy, underscoring the need for refinement in fracture localization. Critical relevance statement AI may provide help by enabling optimal use of limited resources or personnel. This study evaluates an AI tool designed to aid in detecting fractures, possibly reducing reading time or optimization of radiology workflow by prioritizing fracture-positive cases. Key Points Cross-validation on a consecutive Dutch cohort confirms this AI tool’s clinical robustness. The tool detected fractures with 87% sensitivity, 87% specificity, and 0.92 AUC. AI localizes 60% of fractures, the highest for clavicle (90%) and lowest for ribs (7%). Graphical Abstract
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s13244-025-02034-1
- https://insightsimaging.springeropen.com/counter/pdf/10.1186/s13244-025-02034-1
- OA Status
- gold
- Cited By
- 1
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411983169
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411983169Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s13244-025-02034-1Digital Object Identifier
- Title
-
Cross-validation of an artificial intelligence tool for fracture classification and localization on conventional radiography in Dutch populationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-03Full publication date if available
- Authors
-
Huibert C. Ruitenbeek, Sahil Sahil, Anil Kumar, Ravi Kumar Kushawaha, Swetha Tanamala, Saigopal Sathyamurthy, Rohitashva Agrawal, Subhankar Chattoraj, Jasika Paramasamy, Daniël Bos, Roshan Fahimi, Edwin H. G. Oei, Jacob J. VisserList of authors in order
- Landing page
-
https://doi.org/10.1186/s13244-025-02034-1Publisher landing page
- PDF URL
-
https://insightsimaging.springeropen.com/counter/pdf/10.1186/s13244-025-02034-1Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://insightsimaging.springeropen.com/counter/pdf/10.1186/s13244-025-02034-1Direct OA link when available
- Concepts
-
Medicine, Radiography, Periprosthetic, Wrist, Pelvis, Radiology, Humerus, Forearm, Elbow, Artificial intelligence, Arthroplasty, Surgery, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411983169 |
|---|---|
| doi | https://doi.org/10.1186/s13244-025-02034-1 |
| ids.doi | https://doi.org/10.1186/s13244-025-02034-1 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40610833 |
| ids.openalex | https://openalex.org/W4411983169 |
| fwci | 2.28477614 |
| type | article |
| title | Cross-validation of an artificial intelligence tool for fracture classification and localization on conventional radiography in Dutch population |
| biblio.issue | 1 |
| biblio.volume | 16 |
| biblio.last_page | 150 |
| biblio.first_page | 150 |
| topics[0].id | https://openalex.org/T11636 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9933000206947327 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2718 |
| topics[0].subfield.display_name | Health Informatics |
| topics[0].display_name | Artificial Intelligence in Healthcare and Education |
| topics[1].id | https://openalex.org/T11509 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9865000247955322 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2746 |
| topics[1].subfield.display_name | Surgery |
| topics[1].display_name | Hip and Femur Fractures |
| topics[2].id | https://openalex.org/T10658 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9846000075340271 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Bone fractures and treatments |
| is_xpac | False |
| apc_list.value | 1690 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2072 |
| apc_paid.value | 1690 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 2072 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7788656949996948 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C36454342 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5656582117080688 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245341 |
| concepts[1].display_name | Radiography |
| concepts[2].id | https://openalex.org/C2778120723 |
| concepts[2].level | 3 |
| concepts[2].score | 0.536902666091919 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q16872681 |
| concepts[2].display_name | Periprosthetic |
| concepts[3].id | https://openalex.org/C2778216619 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5308025479316711 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q185706 |
| concepts[3].display_name | Wrist |
| concepts[4].id | https://openalex.org/C2778357063 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48914220929145813 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q713102 |
| concepts[4].display_name | Pelvis |
| concepts[5].id | https://openalex.org/C126838900 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4809800386428833 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[5].display_name | Radiology |
| concepts[6].id | https://openalex.org/C2776206872 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4388166666030884 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q162595 |
| concepts[6].display_name | Humerus |
| concepts[7].id | https://openalex.org/C2780214079 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4357718527317047 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q228537 |
| concepts[7].display_name | Forearm |
| concepts[8].id | https://openalex.org/C2781184374 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42088595032691956 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42586 |
| concepts[8].display_name | Elbow |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39737167954444885 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C2778336525 |
| concepts[10].level | 2 |
| concepts[10].score | 0.325067400932312 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q708178 |
| concepts[10].display_name | Arthroplasty |
| concepts[11].id | https://openalex.org/C141071460 |
| concepts[11].level | 1 |
| concepts[11].score | 0.22195205092430115 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[11].display_name | Surgery |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.11411482095718384 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.7788656949996948 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/radiography |
| keywords[1].score | 0.5656582117080688 |
| keywords[1].display_name | Radiography |
| keywords[2].id | https://openalex.org/keywords/periprosthetic |
| keywords[2].score | 0.536902666091919 |
| keywords[2].display_name | Periprosthetic |
| keywords[3].id | https://openalex.org/keywords/wrist |
| keywords[3].score | 0.5308025479316711 |
| keywords[3].display_name | Wrist |
| keywords[4].id | https://openalex.org/keywords/pelvis |
| keywords[4].score | 0.48914220929145813 |
| keywords[4].display_name | Pelvis |
| keywords[5].id | https://openalex.org/keywords/radiology |
| keywords[5].score | 0.4809800386428833 |
| keywords[5].display_name | Radiology |
| keywords[6].id | https://openalex.org/keywords/humerus |
| keywords[6].score | 0.4388166666030884 |
| keywords[6].display_name | Humerus |
| keywords[7].id | https://openalex.org/keywords/forearm |
| keywords[7].score | 0.4357718527317047 |
| keywords[7].display_name | Forearm |
| keywords[8].id | https://openalex.org/keywords/elbow |
| keywords[8].score | 0.42088595032691956 |
| keywords[8].display_name | Elbow |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.39737167954444885 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/arthroplasty |
| keywords[10].score | 0.325067400932312 |
| keywords[10].display_name | Arthroplasty |
| keywords[11].id | https://openalex.org/keywords/surgery |
| keywords[11].score | 0.22195205092430115 |
| keywords[11].display_name | Surgery |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.11411482095718384 |
| keywords[12].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1186/s13244-025-02034-1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S44632665 |
| locations[0].source.issn | 1869-4101 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1869-4101 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Insights into Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://insightsimaging.springeropen.com/counter/pdf/10.1186/s13244-025-02034-1 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Insights into Imaging |
| locations[0].landing_page_url | https://doi.org/10.1186/s13244-025-02034-1 |
| locations[1].id | pmid:40610833 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Insights into imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40610833 |
| locations[2].id | pmh:oai:doaj.org/article:16acb4df97ba4657b90b546f2c7b23c8 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Insights into Imaging, Vol 16, Iss 1, Pp 1-9 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/16acb4df97ba4657b90b546f2c7b23c8 |
| locations[3].id | pmh:oai:europepmc.org:11037887 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12229378 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5107950020 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Huibert C. Ruitenbeek |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[0].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[0].institutions[0].ror | https://ror.org/018906e22 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Erasmus MC |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huibert C Ruitenbeek |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[1].author.id | https://openalex.org/A5037790523 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sahil Sahil |
| authorships[1].affiliations[0].raw_affiliation_string | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sahil Sahil |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[2].author.id | https://openalex.org/A5010043794 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4266-2013 |
| authorships[2].author.display_name | Anil Kumar |
| authorships[2].affiliations[0].raw_affiliation_string | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aradhana Kumar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[3].author.id | https://openalex.org/A5042442046 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ravi Kumar Kushawaha |
| authorships[3].affiliations[0].raw_affiliation_string | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ravi Kumar Kushawaha |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[4].author.id | https://openalex.org/A5060872958 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Swetha Tanamala |
| authorships[4].affiliations[0].raw_affiliation_string | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Swetha Tanamala |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[5].author.id | https://openalex.org/A5069881941 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Saigopal Sathyamurthy |
| authorships[5].affiliations[0].raw_affiliation_string | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Saigopal Sathyamurthy |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[6].author.id | https://openalex.org/A5064304476 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Rohitashva Agrawal |
| authorships[6].affiliations[0].raw_affiliation_string | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Rohitashva Agrawal |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[7].author.id | https://openalex.org/A5047348099 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1218-0769 |
| authorships[7].author.display_name | Subhankar Chattoraj |
| authorships[7].affiliations[0].raw_affiliation_string | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Subhankar Chattoraj |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Qure.ai, Level 7, Oberoi Commerz II, Goregaon East, Mumbai, India. |
| authorships[8].author.id | https://openalex.org/A5104988703 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Jasika Paramasamy |
| authorships[8].countries | NL |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[8].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[8].institutions[0].ror | https://ror.org/018906e22 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[8].institutions[0].country_code | NL |
| authorships[8].institutions[0].display_name | Erasmus MC |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jasika Paramasamy |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[9].author.id | https://openalex.org/A5089667544 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-8979-2603 |
| authorships[9].author.display_name | Daniël Bos |
| authorships[9].countries | NL |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I2801952686 |
| authorships[9].affiliations[1].raw_affiliation_string | Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[9].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[9].institutions[0].ror | https://ror.org/018906e22 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[9].institutions[0].country_code | NL |
| authorships[9].institutions[0].display_name | Erasmus MC |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Daniel Bos |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands., Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[10].author.id | https://openalex.org/A5075603167 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Roshan Fahimi |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I136199984, https://openalex.org/I4210087915 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. |
| authorships[10].institutions[0].id | https://openalex.org/I136199984 |
| authorships[10].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Harvard University |
| authorships[10].institutions[1].id | https://openalex.org/I4210087915 |
| authorships[10].institutions[1].ror | https://ror.org/002pd6e78 |
| authorships[10].institutions[1].type | healthcare |
| authorships[10].institutions[1].lineage | https://openalex.org/I4210087915, https://openalex.org/I48633490 |
| authorships[10].institutions[1].country_code | US |
| authorships[10].institutions[1].display_name | Massachusetts General Hospital |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Roshan Fahimi |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. |
| authorships[11].author.id | https://openalex.org/A5014675252 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-3727-3427 |
| authorships[11].author.display_name | Edwin H. G. Oei |
| authorships[11].countries | NL |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[11].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[11].institutions[0].ror | https://ror.org/018906e22 |
| authorships[11].institutions[0].type | healthcare |
| authorships[11].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[11].institutions[0].country_code | NL |
| authorships[11].institutions[0].display_name | Erasmus MC |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Edwin H G Oei |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[12].author.id | https://openalex.org/A5031408152 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-9935-2097 |
| authorships[12].author.display_name | Jacob J. Visser |
| authorships[12].countries | NL |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[12].affiliations[0].raw_affiliation_string | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. [email protected]. |
| authorships[12].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[12].institutions[0].ror | https://ror.org/018906e22 |
| authorships[12].institutions[0].type | healthcare |
| authorships[12].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[12].institutions[0].country_code | NL |
| authorships[12].institutions[0].display_name | Erasmus MC |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Jacob J Visser |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://insightsimaging.springeropen.com/counter/pdf/10.1186/s13244-025-02034-1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Cross-validation of an artificial intelligence tool for fracture classification and localization on conventional radiography in Dutch population |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11636 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9933000206947327 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2718 |
| primary_topic.subfield.display_name | Health Informatics |
| primary_topic.display_name | Artificial Intelligence in Healthcare and Education |
| related_works | https://openalex.org/W1982166191, https://openalex.org/W2735375504, https://openalex.org/W2383718787, https://openalex.org/W1989578999, https://openalex.org/W2071621727, https://openalex.org/W2058647376, https://openalex.org/W826548490, https://openalex.org/W2885273849, https://openalex.org/W2418198049, https://openalex.org/W2150388832 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s13244-025-02034-1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S44632665 |
| best_oa_location.source.issn | 1869-4101 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1869-4101 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Insights into Imaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://insightsimaging.springeropen.com/counter/pdf/10.1186/s13244-025-02034-1 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Insights into Imaging |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s13244-025-02034-1 |
| primary_location.id | doi:10.1186/s13244-025-02034-1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S44632665 |
| primary_location.source.issn | 1869-4101 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1869-4101 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Insights into Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://insightsimaging.springeropen.com/counter/pdf/10.1186/s13244-025-02034-1 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Insights into Imaging |
| primary_location.landing_page_url | https://doi.org/10.1186/s13244-025-02034-1 |
| publication_date | 2025-07-03 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2047719321, https://openalex.org/W3195195170, https://openalex.org/W2043211114, https://openalex.org/W1637283730, https://openalex.org/W2102799620, https://openalex.org/W2944015619, https://openalex.org/W2904072138, https://openalex.org/W2139116328, https://openalex.org/W3108833610, https://openalex.org/W4366990052, https://openalex.org/W4308959200, https://openalex.org/W4220933981, https://openalex.org/W4283584475, https://openalex.org/W4391343068, https://openalex.org/W4391147859, https://openalex.org/W4200013359, https://openalex.org/W4283693809, https://openalex.org/W3158653447, https://openalex.org/W4392709435, https://openalex.org/W3203153058, https://openalex.org/W4316039761, https://openalex.org/W4400918928, https://openalex.org/W4311359174, https://openalex.org/W4384700220, https://openalex.org/W4391540891, https://openalex.org/W4390725914 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 21, 48, 199, 205, 282 |
| abstract_inverted_index.17 | 64 |
| abstract_inverted_index.48 | 117 |
| abstract_inverted_index.7% | 186 |
| abstract_inverted_index.AI | 14, 154, 202, 240, 257, 288, 304 |
| abstract_inverted_index.In | 111 |
| abstract_inverted_index.an | 13, 83, 256 |
| abstract_inverted_index.by | 82, 127, 244, 274 |
| abstract_inverted_index.in | 20, 63, 226, 234, 262 |
| abstract_inverted_index.is | 7, 216 |
| abstract_inverted_index.of | 4, 12, 163, 248, 271, 307 |
| abstract_inverted_index.on | 17, 56, 72, 204, 210, 218, 281 |
| abstract_inverted_index.or | 251, 269 |
| abstract_inverted_index.to | 8, 26, 30, 103, 190, 260 |
| abstract_inverted_index.60% | 182, 306 |
| abstract_inverted_index.87% | 297, 299 |
| abstract_inverted_index.90% | 191 |
| abstract_inverted_index.AUC | 162 |
| abstract_inverted_index.CI: | 166, 170, 175 |
| abstract_inverted_index.Key | 278 |
| abstract_inverted_index.The | 2, 53, 67, 87, 153, 292 |
| abstract_inverted_index.aid | 261 |
| abstract_inverted_index.aim | 3 |
| abstract_inverted_index.and | 25, 32, 42, 60, 80, 92, 97, 107, 125, 137, 147, 161, 172, 301, 314 |
| abstract_inverted_index.for | 187, 192, 232, 311, 316 |
| abstract_inverted_index.had | 151 |
| abstract_inverted_index.its | 28 |
| abstract_inverted_index.may | 241 |
| abstract_inverted_index.rib | 188 |
| abstract_inverted_index.the | 10, 230, 309 |
| abstract_inverted_index.use | 247 |
| abstract_inverted_index.was | 70, 181 |
| abstract_inverted_index.(95% | 165, 169, 174 |
| abstract_inverted_index.0.92 | 173, 302 |
| abstract_inverted_index.2019 | 41 |
| abstract_inverted_index.2022 | 44 |
| abstract_inverted_index.7265 | 121 |
| abstract_inverted_index.AUC. | 303 |
| abstract_inverted_index.This | 196, 253 |
| abstract_inverted_index.age, | 116 |
| abstract_inverted_index.body | 65, 128 |
| abstract_inverted_index.both | 90 |
| abstract_inverted_index.data | 19 |
| abstract_inverted_index.deep | 50 |
| abstract_inverted_index.foot | 146 |
| abstract_inverted_index.from | 76, 185 |
| abstract_inverted_index.hand | 136 |
| abstract_inverted_index.help | 243 |
| abstract_inverted_index.hip, | 140 |
| abstract_inverted_index.leg, | 144 |
| abstract_inverted_index.need | 231 |
| abstract_inverted_index.over | 99 |
| abstract_inverted_index.rate | 180 |
| abstract_inverted_index.real | 219 |
| abstract_inverted_index.ribs | 317 |
| abstract_inverted_index.this | 5, 287 |
| abstract_inverted_index.time | 268 |
| abstract_inverted_index.toe. | 148 |
| abstract_inverted_index.tool | 15, 155, 203, 258, 293 |
| abstract_inverted_index.were | 45, 123 |
| abstract_inverted_index.with | 296 |
| abstract_inverted_index.(29%) | 150 |
| abstract_inverted_index.(7%). | 318 |
| abstract_inverted_index.(90%) | 313 |
| abstract_inverted_index.(IoU) | 101 |
| abstract_inverted_index.87.1% | 164, 168 |
| abstract_inverted_index.Dutch | 22, 284 |
| abstract_inverted_index.Union | 100 |
| abstract_inverted_index.While | 213 |
| abstract_inverted_index.based | 71 |
| abstract_inverted_index.data, | 58, 221 |
| abstract_inverted_index.data. | 212 |
| abstract_inverted_index.knee, | 142 |
| abstract_inverted_index.lower | 143 |
| abstract_inverted_index.male) | 122 |
| abstract_inverted_index.study | 6, 197, 254 |
| abstract_inverted_index.tool, | 54 |
| abstract_inverted_index.using | 47 |
| abstract_inverted_index.years | 118 |
| abstract_inverted_index.(range | 119 |
| abstract_inverted_index.14,311 | 113 |
| abstract_inverted_index.Indian | 18, 57, 211 |
| abstract_inverted_index.Points | 279 |
| abstract_inverted_index.ankle, | 145 |
| abstract_inverted_index.assess | 27, 104 |
| abstract_inverted_index.binary | 96 |
| abstract_inverted_index.cases. | 277 |
| abstract_inverted_index.center | 24 |
| abstract_inverted_index.cohort | 285 |
| abstract_inverted_index.elbow, | 133 |
| abstract_inverted_index.femur, | 141 |
| abstract_inverted_index.lowest | 315 |
| abstract_inverted_index.neural | 51 |
| abstract_inverted_index.parts. | 66 |
| abstract_inverted_index.parts; | 129 |
| abstract_inverted_index.robust | 217 |
| abstract_inverted_index.total, | 112 |
| abstract_inverted_index.wrist, | 135 |
| abstract_inverted_index.(median | 115 |
| abstract_inverted_index.January | 40 |
| abstract_inverted_index.Methods | 35 |
| abstract_inverted_index.Results | 110 |
| abstract_inverted_index.ability | 29 |
| abstract_inverted_index.between | 39 |
| abstract_inverted_index.finger, | 138 |
| abstract_inverted_index.highest | 310 |
| abstract_inverted_index.limited | 249 |
| abstract_inverted_index.medical | 23 |
| abstract_inverted_index.metrics | 102 |
| abstract_inverted_index.optimal | 246 |
| abstract_inverted_index.overall | 157 |
| abstract_inverted_index.pelvis, | 139 |
| abstract_inverted_index.provide | 242 |
| abstract_inverted_index.ranging | 184 |
| abstract_inverted_index.reading | 267 |
| abstract_inverted_index.reports | 74 |
| abstract_inverted_index.reveals | 224 |
| abstract_inverted_index.routine | 77 |
| abstract_inverted_index.trained | 16, 55, 209 |
| abstract_inverted_index.Abstract | 0, 320 |
| abstract_inverted_index.Critical | 237 |
| abstract_inverted_index.Fracture | 178 |
| abstract_inverted_index.November | 43 |
| abstract_inverted_index.acquired | 38 |
| abstract_inverted_index.analysis | 88, 223 |
| abstract_inverted_index.analyzed | 46, 124 |
| abstract_inverted_index.classify | 31 |
| abstract_inverted_index.clavicle | 193, 312 |
| abstract_inverted_index.clinical | 78, 220, 290 |
| abstract_inverted_index.confirms | 286 |
| abstract_inverted_index.dataset, | 207 |
| abstract_inverted_index.designed | 259 |
| abstract_inverted_index.detected | 294 |
| abstract_inverted_index.enabling | 245 |
| abstract_inverted_index.forearm, | 134 |
| abstract_inverted_index.fracture | 105, 200, 235 |
| abstract_inverted_index.humerus, | 132 |
| abstract_inverted_index.included | 89 |
| abstract_inverted_index.localize | 33 |
| abstract_inverted_index.network. | 52 |
| abstract_inverted_index.overall, | 183 |
| abstract_inverted_index.possibly | 265 |
| abstract_inverted_index.reducing | 266 |
| abstract_inverted_index.standard | 69 |
| abstract_inverted_index.tool’s | 289 |
| abstract_inverted_index.validate | 9 |
| abstract_inverted_index.workflow | 79, 273 |
| abstract_inverted_index.18–98), | 120 |
| abstract_inverted_index.Graphical | 319 |
| abstract_inverted_index.accuracy, | 228 |
| abstract_inverted_index.accuracy. | 109 |
| abstract_inverted_index.clavicle, | 130 |
| abstract_inverted_index.confirmed | 81 |
| abstract_inverted_index.detecting | 263 |
| abstract_inverted_index.detection | 106, 179, 201 |
| abstract_inverted_index.employing | 95 |
| abstract_inverted_index.evaluates | 255 |
| abstract_inverted_index.fractures | 62, 189, 295 |
| abstract_inverted_index.localized | 61 |
| abstract_inverted_index.localizes | 305 |
| abstract_inverted_index.multitask | 49 |
| abstract_inverted_index.radiology | 73, 272 |
| abstract_inverted_index.reference | 68 |
| abstract_inverted_index.relevance | 238 |
| abstract_inverted_index.resources | 250 |
| abstract_inverted_index.resulting | 75 |
| abstract_inverted_index.shoulder, | 131 |
| abstract_inverted_index.statement | 239 |
| abstract_inverted_index.validates | 198 |
| abstract_inverted_index.Objectives | 1 |
| abstract_inverted_index.fractures, | 264, 308 |
| abstract_inverted_index.fractures. | 34, 152, 194 |
| abstract_inverted_index.identified | 59 |
| abstract_inverted_index.originally | 208 |
| abstract_inverted_index.personnel. | 252 |
| abstract_inverted_index.refinement | 233 |
| abstract_inverted_index.4156/14,311 | 149 |
| abstract_inverted_index.Conclusions | 195 |
| abstract_inverted_index.categorized | 126 |
| abstract_inverted_index.consecutive | 283 |
| abstract_inverted_index.experienced | 84 |
| abstract_inverted_index.performance | 215 |
| abstract_inverted_index.radiographs | 37, 114 |
| abstract_inverted_index.robustness. | 291 |
| abstract_inverted_index.variability | 225 |
| abstract_inverted_index.Conventional | 36 |
| abstract_inverted_index.Intersection | 98 |
| abstract_inverted_index.demonstrated | 156 |
| abstract_inverted_index.evaluations, | 94 |
| abstract_inverted_index.localization | 108, 227 |
| abstract_inverted_index.optimization | 270 |
| abstract_inverted_index.patient-wise | 91, 158 |
| abstract_inverted_index.prioritizing | 275 |
| abstract_inverted_index.radiologist. | 86 |
| abstract_inverted_index.sensitivity, | 159, 298 |
| abstract_inverted_index.specificity, | 160, 300 |
| abstract_inverted_index.underscoring | 229 |
| abstract_inverted_index.0.91–0.93), | 176 |
| abstract_inverted_index.effectiveness | 11 |
| abstract_inverted_index.fracture-wise | 93, 222 |
| abstract_inverted_index.localization. | 236 |
| abstract_inverted_index.respectively. | 177 |
| abstract_inverted_index.86.1–88.1%), | 167 |
| abstract_inverted_index.86.4–87.7%), | 171 |
| abstract_inverted_index.classification | 214 |
| abstract_inverted_index.musculoskeletal | 85 |
| abstract_inverted_index.Cross-validation | 280 |
| abstract_inverted_index.Western-European | 206 |
| abstract_inverted_index.fracture-positive | 276 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 13 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.80649682 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |