Cross-X Learning for Fine-Grained Visual Categorization Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1909.04412
Recognizing objects from subcategories with very subtle differences remains a challenging task due to the large intra-class and small inter-class variation. Recent work tackles this problem in a weakly-supervised manner: object parts are first detected and the corresponding part-specific features are extracted for fine-grained classification. However, these methods typically treat the part-specific features of each image in isolation while neglecting their relationships between different images. In this paper, we propose Cross-X learning, a simple yet effective approach that exploits the relationships between different images and between different network layers for robust multi-scale feature learning. Our approach involves two novel components: (i) a cross-category cross-semantic regularizer that guides the extracted features to represent semantic parts and, (ii) a cross-layer regularizer that improves the robustness of multi-scale features by matching the prediction distribution across multiple layers. Our approach can be easily trained end-to-end and is scalable to large datasets like NABirds. We empirically analyze the contributions of different components of our approach and demonstrate its robustness, effectiveness and state-of-the-art performance on five benchmark datasets. Code is available at \url{https://github.com/cswluo/CrossX}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1909.04412
- https://arxiv.org/pdf/1909.04412
- OA Status
- green
- Cited By
- 17
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2972571843
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2972571843Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1909.04412Digital Object Identifier
- Title
-
Cross-X Learning for Fine-Grained Visual CategorizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-09-10Full publication date if available
- Authors
-
Wei Luo, Xitong Yang, Xianjie Mo, Yuheng Lu, Larry S. Davis, Jun Li, Jian Yang, Ser-Nam LimList of authors in order
- Landing page
-
https://arxiv.org/abs/1909.04412Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1909.04412Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1909.04412Direct OA link when available
- Concepts
-
Computer science, Robustness (evolution), Artificial intelligence, Scalability, Benchmark (surveying), Machine learning, Categorization, Pattern recognition (psychology), Exploit, Feature learning, Matching (statistics), Feature extraction, Mathematics, Gene, Biochemistry, Statistics, Chemistry, Computer security, Geography, Geodesy, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 4, 2022: 3, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2972571843 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1909.04412 |
| ids.doi | https://doi.org/10.48550/arxiv.1909.04412 |
| ids.mag | 2972571843 |
| ids.openalex | https://openalex.org/W2972571843 |
| fwci | |
| type | preprint |
| title | Cross-X Learning for Fine-Grained Visual Categorization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9987000226974487 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8374142646789551 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7609952688217163 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6568846702575684 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C48044578 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5472795367240906 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[3].display_name | Scalability |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5389583110809326 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5369123816490173 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C94124525 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5322228670120239 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[6].display_name | Categorization |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5320072770118713 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C165696696 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5203958749771118 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[8].display_name | Exploit |
| concepts[9].id | https://openalex.org/C59404180 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4668700397014618 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[9].display_name | Feature learning |
| concepts[10].id | https://openalex.org/C165064840 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4362828731536865 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[10].display_name | Matching (statistics) |
| concepts[11].id | https://openalex.org/C52622490 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4114507734775543 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[11].display_name | Feature extraction |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0633518397808075 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C38652104 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[17].display_name | Computer security |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C13280743 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[19].display_name | Geodesy |
| concepts[20].id | https://openalex.org/C77088390 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[20].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8374142646789551 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.7609952688217163 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6568846702575684 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/scalability |
| keywords[3].score | 0.5472795367240906 |
| keywords[3].display_name | Scalability |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.5389583110809326 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5369123816490173 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/categorization |
| keywords[6].score | 0.5322228670120239 |
| keywords[6].display_name | Categorization |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5320072770118713 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/exploit |
| keywords[8].score | 0.5203958749771118 |
| keywords[8].display_name | Exploit |
| keywords[9].id | https://openalex.org/keywords/feature-learning |
| keywords[9].score | 0.4668700397014618 |
| keywords[9].display_name | Feature learning |
| keywords[10].id | https://openalex.org/keywords/matching |
| keywords[10].score | 0.4362828731536865 |
| keywords[10].display_name | Matching (statistics) |
| keywords[11].id | https://openalex.org/keywords/feature-extraction |
| keywords[11].score | 0.4114507734775543 |
| keywords[11].display_name | Feature extraction |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.0633518397808075 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1909.04412 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1909.04412 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1909.04412 |
| locations[1].id | doi:10.48550/arxiv.1909.04412 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1909.04412 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100718116 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1431-4134 |
| authorships[0].author.display_name | Wei Luo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei Luo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091064356 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4372-241X |
| authorships[1].author.display_name | Xitong Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xitong Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101087836 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xianjie Mo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xianjie Mo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006690717 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2767-0894 |
| authorships[3].author.display_name | Yuheng Lu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yuheng Lu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5111454036 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Larry S. Davis |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Larry S. Davis |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100362041 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1613-9448 |
| authorships[5].author.display_name | Jun Li |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jun Li |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101507281 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8922-7687 |
| authorships[6].author.display_name | Jian Yang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jian Yang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5113969216 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9525-0288 |
| authorships[7].author.display_name | Ser-Nam Lim |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ser-Nam Lim |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1909.04412 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Cross-X Learning for Fine-Grained Visual Categorization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W17155033, https://openalex.org/W3207760230, https://openalex.org/W1496222301, https://openalex.org/W1590307681, https://openalex.org/W2536018345, https://openalex.org/W4312814274, https://openalex.org/W4285370786, https://openalex.org/W2296488620, https://openalex.org/W2358353312, https://openalex.org/W4309346246 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1909.04412 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1909.04412 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1909.04412 |
| primary_location.id | pmh:oai:arXiv.org:1909.04412 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1909.04412 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1909.04412 |
| publication_date | 2019-09-10 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2963025229, https://openalex.org/W2337897552, https://openalex.org/W2194775991, https://openalex.org/W1616462885, https://openalex.org/W1821462560, https://openalex.org/W1955942245, https://openalex.org/W2740620254, https://openalex.org/W2163605009, https://openalex.org/W2604702198, https://openalex.org/W2891951760, https://openalex.org/W1954152232, https://openalex.org/W2773003563, https://openalex.org/W2207849498, https://openalex.org/W2752782242, https://openalex.org/W2962835968, https://openalex.org/W2462457117, https://openalex.org/W1948751323, https://openalex.org/W2097117768, https://openalex.org/W1929903369, https://openalex.org/W2963446712, https://openalex.org/W1836465849, https://openalex.org/W2479109623, https://openalex.org/W2952329796, https://openalex.org/W1496650988, https://openalex.org/W2963350250, https://openalex.org/W2963323244, https://openalex.org/W1846799578, https://openalex.org/W2295107390, https://openalex.org/W2565639579, https://openalex.org/W2490270993, https://openalex.org/W2138011018, https://openalex.org/W1903029394, https://openalex.org/W1797268635, https://openalex.org/W2194011657, https://openalex.org/W2964189431, https://openalex.org/W3106250896, https://openalex.org/W2963725249, https://openalex.org/W1928906481, https://openalex.org/W2892035828, https://openalex.org/W2798365843, https://openalex.org/W2196615847 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 9, 27, 72, 101, 116 |
| abstract_inverted_index.In | 65 |
| abstract_inverted_index.We | 149 |
| abstract_inverted_index.at | 175 |
| abstract_inverted_index.be | 137 |
| abstract_inverted_index.by | 126 |
| abstract_inverted_index.in | 26, 56 |
| abstract_inverted_index.is | 142, 173 |
| abstract_inverted_index.of | 53, 123, 154, 157 |
| abstract_inverted_index.on | 168 |
| abstract_inverted_index.to | 13, 110, 144 |
| abstract_inverted_index.we | 68 |
| abstract_inverted_index.(i) | 100 |
| abstract_inverted_index.Our | 94, 134 |
| abstract_inverted_index.and | 17, 35, 84, 141, 160, 165 |
| abstract_inverted_index.are | 32, 40 |
| abstract_inverted_index.can | 136 |
| abstract_inverted_index.due | 12 |
| abstract_inverted_index.for | 42, 89 |
| abstract_inverted_index.its | 162 |
| abstract_inverted_index.our | 158 |
| abstract_inverted_index.the | 14, 36, 50, 79, 107, 121, 128, 152 |
| abstract_inverted_index.two | 97 |
| abstract_inverted_index.yet | 74 |
| abstract_inverted_index.(ii) | 115 |
| abstract_inverted_index.Code | 172 |
| abstract_inverted_index.and, | 114 |
| abstract_inverted_index.each | 54 |
| abstract_inverted_index.five | 169 |
| abstract_inverted_index.from | 2 |
| abstract_inverted_index.like | 147 |
| abstract_inverted_index.task | 11 |
| abstract_inverted_index.that | 77, 105, 119 |
| abstract_inverted_index.this | 24, 66 |
| abstract_inverted_index.very | 5 |
| abstract_inverted_index.with | 4 |
| abstract_inverted_index.work | 22 |
| abstract_inverted_index.first | 33 |
| abstract_inverted_index.image | 55 |
| abstract_inverted_index.large | 15, 145 |
| abstract_inverted_index.novel | 98 |
| abstract_inverted_index.parts | 31, 113 |
| abstract_inverted_index.small | 18 |
| abstract_inverted_index.their | 60 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.treat | 49 |
| abstract_inverted_index.while | 58 |
| abstract_inverted_index.Recent | 21 |
| abstract_inverted_index.across | 131 |
| abstract_inverted_index.easily | 138 |
| abstract_inverted_index.guides | 106 |
| abstract_inverted_index.images | 83 |
| abstract_inverted_index.layers | 88 |
| abstract_inverted_index.object | 30 |
| abstract_inverted_index.paper, | 67 |
| abstract_inverted_index.robust | 90 |
| abstract_inverted_index.simple | 73 |
| abstract_inverted_index.subtle | 6 |
| abstract_inverted_index.Cross-X | 70 |
| abstract_inverted_index.analyze | 151 |
| abstract_inverted_index.between | 62, 81, 85 |
| abstract_inverted_index.feature | 92 |
| abstract_inverted_index.images. | 64 |
| abstract_inverted_index.layers. | 133 |
| abstract_inverted_index.manner: | 29 |
| abstract_inverted_index.methods | 47 |
| abstract_inverted_index.network | 87 |
| abstract_inverted_index.objects | 1 |
| abstract_inverted_index.problem | 25 |
| abstract_inverted_index.propose | 69 |
| abstract_inverted_index.remains | 8 |
| abstract_inverted_index.tackles | 23 |
| abstract_inverted_index.trained | 139 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.NABirds. | 148 |
| abstract_inverted_index.approach | 76, 95, 135, 159 |
| abstract_inverted_index.datasets | 146 |
| abstract_inverted_index.detected | 34 |
| abstract_inverted_index.exploits | 78 |
| abstract_inverted_index.features | 39, 52, 109, 125 |
| abstract_inverted_index.improves | 120 |
| abstract_inverted_index.involves | 96 |
| abstract_inverted_index.matching | 127 |
| abstract_inverted_index.multiple | 132 |
| abstract_inverted_index.scalable | 143 |
| abstract_inverted_index.semantic | 112 |
| abstract_inverted_index.available | 174 |
| abstract_inverted_index.benchmark | 170 |
| abstract_inverted_index.datasets. | 171 |
| abstract_inverted_index.different | 63, 82, 86, 155 |
| abstract_inverted_index.effective | 75 |
| abstract_inverted_index.extracted | 41, 108 |
| abstract_inverted_index.isolation | 57 |
| abstract_inverted_index.learning, | 71 |
| abstract_inverted_index.learning. | 93 |
| abstract_inverted_index.represent | 111 |
| abstract_inverted_index.typically | 48 |
| abstract_inverted_index.components | 156 |
| abstract_inverted_index.end-to-end | 140 |
| abstract_inverted_index.neglecting | 59 |
| abstract_inverted_index.prediction | 129 |
| abstract_inverted_index.robustness | 122 |
| abstract_inverted_index.variation. | 20 |
| abstract_inverted_index.Recognizing | 0 |
| abstract_inverted_index.challenging | 10 |
| abstract_inverted_index.components: | 99 |
| abstract_inverted_index.cross-layer | 117 |
| abstract_inverted_index.demonstrate | 161 |
| abstract_inverted_index.differences | 7 |
| abstract_inverted_index.empirically | 150 |
| abstract_inverted_index.inter-class | 19 |
| abstract_inverted_index.intra-class | 16 |
| abstract_inverted_index.multi-scale | 91, 124 |
| abstract_inverted_index.performance | 167 |
| abstract_inverted_index.regularizer | 104, 118 |
| abstract_inverted_index.robustness, | 163 |
| abstract_inverted_index.distribution | 130 |
| abstract_inverted_index.fine-grained | 43 |
| abstract_inverted_index.contributions | 153 |
| abstract_inverted_index.corresponding | 37 |
| abstract_inverted_index.effectiveness | 164 |
| abstract_inverted_index.part-specific | 38, 51 |
| abstract_inverted_index.relationships | 61, 80 |
| abstract_inverted_index.subcategories | 3 |
| abstract_inverted_index.cross-category | 102 |
| abstract_inverted_index.cross-semantic | 103 |
| abstract_inverted_index.classification. | 44 |
| abstract_inverted_index.state-of-the-art | 166 |
| abstract_inverted_index.weakly-supervised | 28 |
| abstract_inverted_index.\url{https://github.com/cswluo/CrossX}. | 176 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |