CrossAlignNet: a self-supervised feature learning framework for 3D point cloud understanding Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.7717/peerj-cs.3194
We propose a self-supervised point cloud representation learning framework CrossAlignNet based on cross-modal mask alignment strategy, to solve the problems of imbalance between global semantic and local geometric feature learning, as well as cross-modal information asymmetry in existing methods. A geometrically consistent mask region is established between the point cloud patches and the corresponding image patches through a synchronized mask alignment strategy to ensure cross-modal information symmetry. A dual-task learning framework is designed: the global semantic alignment task enhances the cross-modal semantic consistency through contrastive learning, and the local mask reconstruction task fuses the image cues using the cross-attention mechanism to recover the local geometric structure of the masked point cloud. In addition, the ShapeNet3D-CMA dataset is constructed to provide accurate point cloud-image spatial mapping relations to support cross-modal learning. Our framework shows superior or comparative results against existing methods on three point cloud understanding tasks including object classification, few-shot classification, and part segmentation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.7717/peerj-cs.3194
- OA Status
- gold
- References
- 49
- OpenAlex ID
- https://openalex.org/W4414360294
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414360294Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7717/peerj-cs.3194Digital Object Identifier
- Title
-
CrossAlignNet: a self-supervised feature learning framework for 3D point cloud understandingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-19Full publication date if available
- Authors
-
Fei Wang, Xinglong Dong, Jia Wu, Weishi Zhang, Tuo ZhouList of authors in order
- Landing page
-
https://doi.org/10.7717/peerj-cs.3194Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7717/peerj-cs.3194Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
49Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414360294 |
|---|---|
| doi | https://doi.org/10.7717/peerj-cs.3194 |
| ids.doi | https://doi.org/10.7717/peerj-cs.3194 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40989413 |
| ids.openalex | https://openalex.org/W4414360294 |
| fwci | 0.0 |
| type | article |
| title | CrossAlignNet: a self-supervised feature learning framework for 3D point cloud understanding |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | e3194 |
| biblio.first_page | e3194 |
| topics[0].id | https://openalex.org/T10719 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | 3D Shape Modeling and Analysis |
| topics[1].id | https://openalex.org/T11211 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1907 |
| topics[1].subfield.display_name | Geology |
| topics[1].display_name | 3D Surveying and Cultural Heritage |
| topics[2].id | https://openalex.org/T10191 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Robotics and Sensor-Based Localization |
| is_xpac | False |
| apc_list.value | 1395 |
| apc_list.currency | USD |
| apc_list.value_usd | 1395 |
| apc_paid.value | 1395 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1395 |
| language | en |
| locations[0].id | doi:10.7717/peerj-cs.3194 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210178049 |
| locations[0].source.issn | 2376-5992 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2376-5992 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PeerJ Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320104 |
| locations[0].source.host_organization_name | PeerJ, Inc. |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320104 |
| locations[0].source.host_organization_lineage_names | PeerJ, Inc. |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PeerJ Computer Science |
| locations[0].landing_page_url | https://doi.org/10.7717/peerj-cs.3194 |
| locations[1].id | pmid:40989413 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PeerJ. Computer science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40989413 |
| locations[2].id | pmh:oai:doaj.org/article:4cfadcacbe524631ac30838efdbabd3d |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PeerJ Computer Science, Vol 11, p e3194 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/4cfadcacbe524631ac30838efdbabd3d |
| locations[3].id | pmh:oai:europepmc.org:11262732 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12453720 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100455750 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8432-0009 |
| authorships[0].author.display_name | Fei Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210092944 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Dalian Martime University, Dalian, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210092944 |
| authorships[0].institutions[0].ror | https://ror.org/00g2ypp58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210092944 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Dalian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fei Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Information Science and Technology, Dalian Martime University, Dalian, China |
| authorships[1].author.id | https://openalex.org/A5042647778 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7090-1766 |
| authorships[1].author.display_name | Xinglong Dong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210092944 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Dalian Martime University, Dalian, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210092944 |
| authorships[1].institutions[0].ror | https://ror.org/00g2ypp58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210092944 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Dalian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xingzhen Dong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Information Science and Technology, Dalian Martime University, Dalian, China |
| authorships[2].author.id | https://openalex.org/A5007475662 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1371-5801 |
| authorships[2].author.display_name | Jia Wu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210092944 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Dalian Martime University, Dalian, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210092944 |
| authorships[2].institutions[0].ror | https://ror.org/00g2ypp58 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210092944 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Dalian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jia Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Information Science and Technology, Dalian Martime University, Dalian, China |
| authorships[3].author.id | https://openalex.org/A5102020206 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5013-0941 |
| authorships[3].author.display_name | Weishi Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210092944 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Information Science and Technology, Dalian Martime University, Dalian, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210092944 |
| authorships[3].institutions[0].ror | https://ror.org/00g2ypp58 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210092944 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Dalian University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weishi Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Information Science and Technology, Dalian Martime University, Dalian, China |
| authorships[4].author.id | https://openalex.org/A5047543126 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3913-042X |
| authorships[4].author.display_name | Tuo Zhou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I28813325 |
| authorships[4].affiliations[0].raw_affiliation_string | Research Institute of Information Fusion, Naval Aviation University, Yantai, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I83776822 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, China |
| authorships[4].institutions[0].id | https://openalex.org/I28813325 |
| authorships[4].institutions[0].ror | https://ror.org/03je71k37 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I28813325 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Civil Aviation University of China |
| authorships[4].institutions[1].id | https://openalex.org/I83776822 |
| authorships[4].institutions[1].ror | https://ror.org/03rrkrc24 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I83776822 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Shandong Institute of Business and Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Tuo Zhou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Research Institute of Information Fusion, Naval Aviation University, Yantai, China, School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7717/peerj-cs.3194 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CrossAlignNet: a self-supervised feature learning framework for 3D point cloud understanding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10719 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | 3D Shape Modeling and Analysis |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.7717/peerj-cs.3194 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210178049 |
| best_oa_location.source.issn | 2376-5992 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2376-5992 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PeerJ Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320104 |
| best_oa_location.source.host_organization_name | PeerJ, Inc. |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320104 |
| best_oa_location.source.host_organization_lineage_names | PeerJ, Inc. |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PeerJ Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.7717/peerj-cs.3194 |
| primary_location.id | doi:10.7717/peerj-cs.3194 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210178049 |
| primary_location.source.issn | 2376-5992 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2376-5992 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PeerJ Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320104 |
| primary_location.source.host_organization_name | PeerJ, Inc. |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320104 |
| primary_location.source.host_organization_lineage_names | PeerJ, Inc. |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PeerJ Computer Science |
| primary_location.landing_page_url | https://doi.org/10.7717/peerj-cs.3194 |
| publication_date | 2025-09-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4394671432, https://openalex.org/W4386319838, https://openalex.org/W3205586691, https://openalex.org/W3111535274, https://openalex.org/W4393149778, https://openalex.org/W4292553466, https://openalex.org/W4398787741, https://openalex.org/W4387010603, https://openalex.org/W2963263347, https://openalex.org/W2908510526, https://openalex.org/W4214624153, https://openalex.org/W3157424380, https://openalex.org/W2949768986, https://openalex.org/W4379931579, https://openalex.org/W2979750740, https://openalex.org/W4380079737, https://openalex.org/W4361802179, https://openalex.org/W2963158438, https://openalex.org/W2553307952, https://openalex.org/W4313014889, https://openalex.org/W4386376808, https://openalex.org/W4308393456, https://openalex.org/W4396497995, https://openalex.org/W2963509914, https://openalex.org/W2560609797, https://openalex.org/W4312818263, https://openalex.org/W2594519801, https://openalex.org/W4390874324, https://openalex.org/W1920022804, https://openalex.org/W2990138404, https://openalex.org/W4312367717, https://openalex.org/W4402727761, https://openalex.org/W2988715931, https://openalex.org/W2904332125, https://openalex.org/W4312317653, https://openalex.org/W4386076097, https://openalex.org/W2990613095, https://openalex.org/W1923184257, https://openalex.org/W4312903973, https://openalex.org/W4386075705, https://openalex.org/W4320036969, https://openalex.org/W4312270234, https://openalex.org/W4386071873, https://openalex.org/W4312788538, https://openalex.org/W3116959466, https://openalex.org/W3202611145, https://openalex.org/W3184000328, https://openalex.org/W4386083134, https://openalex.org/W3153465022 |
| referenced_works_count | 49 |
| abstract_inverted_index.A | 39, 67 |
| abstract_inverted_index.a | 2, 57 |
| abstract_inverted_index.In | 111 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 30, 32 |
| abstract_inverted_index.in | 36 |
| abstract_inverted_index.is | 44, 71, 116 |
| abstract_inverted_index.of | 20, 106 |
| abstract_inverted_index.on | 11, 140 |
| abstract_inverted_index.or | 134 |
| abstract_inverted_index.to | 16, 62, 100, 118, 126 |
| abstract_inverted_index.Our | 130 |
| abstract_inverted_index.and | 25, 51, 86, 151 |
| abstract_inverted_index.the | 18, 47, 52, 73, 79, 87, 93, 97, 102, 107, 113 |
| abstract_inverted_index.cues | 95 |
| abstract_inverted_index.mask | 13, 42, 59, 89 |
| abstract_inverted_index.part | 152 |
| abstract_inverted_index.task | 77, 91 |
| abstract_inverted_index.well | 31 |
| abstract_inverted_index.based | 10 |
| abstract_inverted_index.cloud | 5, 49, 143 |
| abstract_inverted_index.fuses | 92 |
| abstract_inverted_index.image | 54, 94 |
| abstract_inverted_index.local | 26, 88, 103 |
| abstract_inverted_index.point | 4, 48, 109, 121, 142 |
| abstract_inverted_index.shows | 132 |
| abstract_inverted_index.solve | 17 |
| abstract_inverted_index.tasks | 145 |
| abstract_inverted_index.three | 141 |
| abstract_inverted_index.using | 96 |
| abstract_inverted_index.cloud. | 110 |
| abstract_inverted_index.ensure | 63 |
| abstract_inverted_index.global | 23, 74 |
| abstract_inverted_index.masked | 108 |
| abstract_inverted_index.object | 147 |
| abstract_inverted_index.region | 43 |
| abstract_inverted_index.against | 137 |
| abstract_inverted_index.between | 22, 46 |
| abstract_inverted_index.dataset | 115 |
| abstract_inverted_index.feature | 28 |
| abstract_inverted_index.mapping | 124 |
| abstract_inverted_index.methods | 139 |
| abstract_inverted_index.patches | 50, 55 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.provide | 119 |
| abstract_inverted_index.recover | 101 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.spatial | 123 |
| abstract_inverted_index.support | 127 |
| abstract_inverted_index.through | 56, 83 |
| abstract_inverted_index.accurate | 120 |
| abstract_inverted_index.enhances | 78 |
| abstract_inverted_index.existing | 37, 138 |
| abstract_inverted_index.few-shot | 149 |
| abstract_inverted_index.learning | 7, 69 |
| abstract_inverted_index.methods. | 38 |
| abstract_inverted_index.problems | 19 |
| abstract_inverted_index.semantic | 24, 75, 81 |
| abstract_inverted_index.strategy | 61 |
| abstract_inverted_index.superior | 133 |
| abstract_inverted_index.addition, | 112 |
| abstract_inverted_index.alignment | 14, 60, 76 |
| abstract_inverted_index.asymmetry | 35 |
| abstract_inverted_index.designed: | 72 |
| abstract_inverted_index.dual-task | 68 |
| abstract_inverted_index.framework | 8, 70, 131 |
| abstract_inverted_index.geometric | 27, 104 |
| abstract_inverted_index.imbalance | 21 |
| abstract_inverted_index.including | 146 |
| abstract_inverted_index.learning, | 29, 85 |
| abstract_inverted_index.learning. | 129 |
| abstract_inverted_index.mechanism | 99 |
| abstract_inverted_index.relations | 125 |
| abstract_inverted_index.strategy, | 15 |
| abstract_inverted_index.structure | 105 |
| abstract_inverted_index.symmetry. | 66 |
| abstract_inverted_index.consistent | 41 |
| abstract_inverted_index.cloud-image | 122 |
| abstract_inverted_index.comparative | 135 |
| abstract_inverted_index.consistency | 82 |
| abstract_inverted_index.constructed | 117 |
| abstract_inverted_index.contrastive | 84 |
| abstract_inverted_index.cross-modal | 12, 33, 64, 80, 128 |
| abstract_inverted_index.established | 45 |
| abstract_inverted_index.information | 34, 65 |
| abstract_inverted_index.synchronized | 58 |
| abstract_inverted_index.CrossAlignNet | 9 |
| abstract_inverted_index.corresponding | 53 |
| abstract_inverted_index.geometrically | 40 |
| abstract_inverted_index.segmentation. | 153 |
| abstract_inverted_index.understanding | 144 |
| abstract_inverted_index.ShapeNet3D-CMA | 114 |
| abstract_inverted_index.reconstruction | 90 |
| abstract_inverted_index.representation | 6 |
| abstract_inverted_index.classification, | 148, 150 |
| abstract_inverted_index.cross-attention | 98 |
| abstract_inverted_index.self-supervised | 3 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.46451307 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |