CSCN: A Cross-Scan Semantic Cluster Network with Scene Coupling Attention for Remote Sensing Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/rs17162803
The spatial attention mechanism has been widely employed in the semantic segmentation of remote sensing images due to its exceptional capacity for modeling long-range dependencies. However, the analysis performance of remote sensing images can be reduced owing to their large intra-class variance and complex spatial structures. The vanilla spatial attention mechanism relies on the dense affine operations and a fixed scanning mechanism, which often introduces a large amount of redundant contextual semantic information and lacks consideration of cross-directional semantic connections. This paper proposes a new Cross-scan Semantic Cluster Network (CSCN) with integrated Semantic Filtering Contextual Cluster (SFCC) and Cross-scan Scene Coupling Attention (CSCA) modules to address these limitations. Specifically, the SFCC is designed to filter redundant information; feature tokens are clustered into semantically related regions, effectively identifying local features and reducing the impact of intra-class variance. CSCA effectively addresses the challenges of complex spatial geographic backgrounds by decomposing scene information into object distributions and global representations, using scene coupling and cross-scanning mechanisms and computing attention from different directions. Combining SFCC and CSCA, CSCN not only effectively segments various geographic spatial objects in complex scenes but also has low model complexity. The experimental results on three benchmark datasets demonstrate the outstanding performance of the attention model generated using this approach.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs17162803
- OA Status
- gold
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413164523
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413164523Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs17162803Digital Object Identifier
- Title
-
CSCN: A Cross-Scan Semantic Cluster Network with Scene Coupling Attention for Remote Sensing SegmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-13Full publication date if available
- Authors
-
Lei Zhang, Xing Xing, Changfeng Jing, Min Jung Kong, Gaoran XuList of authors in order
- Landing page
-
https://doi.org/10.3390/rs17162803Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/rs17162803Direct OA link when available
- Concepts
-
Computer science, Segmentation, Cluster (spacecraft), Remote sensing, Artificial intelligence, Geography, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413164523 |
|---|---|
| doi | https://doi.org/10.3390/rs17162803 |
| ids.doi | https://doi.org/10.3390/rs17162803 |
| ids.openalex | https://openalex.org/W4413164523 |
| fwci | 0.0 |
| type | article |
| title | CSCN: A Cross-Scan Semantic Cluster Network with Scene Coupling Attention for Remote Sensing Segmentation |
| biblio.issue | 16 |
| biblio.volume | 17 |
| biblio.last_page | 2803 |
| biblio.first_page | 2803 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T13282 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9937000274658203 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Automated Road and Building Extraction |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6690739393234253 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5778124928474426 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C164866538 |
| concepts[2].level | 2 |
| concepts[2].score | 0.515637993812561 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q367351 |
| concepts[2].display_name | Cluster (spacecraft) |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.41746652126312256 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3974328935146332 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.1713159680366516 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C31258907 |
| concepts[6].level | 1 |
| concepts[6].score | 0.08542054891586304 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[6].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6690739393234253 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.5778124928474426 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/cluster |
| keywords[2].score | 0.515637993812561 |
| keywords[2].display_name | Cluster (spacecraft) |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.41746652126312256 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3974328935146332 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.1713159680366516 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/computer-network |
| keywords[6].score | 0.08542054891586304 |
| keywords[6].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.3390/rs17162803 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs17162803 |
| locations[1].id | pmh:oai:doaj.org/article:b90a43b6e1fa4a1e980e4d4729620900 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 17, Iss 16, p 2803 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/b90a43b6e1fa4a1e980e4d4729620900 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5000077347 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6731-822X |
| authorships[0].author.display_name | Lei Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[0].institutions[0].id | https://openalex.org/I62853816 |
| authorships[0].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lei Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[1].author.id | https://openalex.org/A5056469164 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xing Xing |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[1].institutions[0].id | https://openalex.org/I62853816 |
| authorships[1].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xing Xing |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[2].author.id | https://openalex.org/A5009114126 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1270-5353 |
| authorships[2].author.display_name | Changfeng Jing |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3125743391 |
| authorships[2].affiliations[0].raw_affiliation_string | School of the Information Engineering, China University of Geosciences Beijing, Beijing 100083, China |
| authorships[2].institutions[0].id | https://openalex.org/I3125743391 |
| authorships[2].institutions[0].ror | https://ror.org/04q6c7p66 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3125743391 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Geosciences (Beijing) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Changfeng Jing |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of the Information Engineering, China University of Geosciences Beijing, Beijing 100083, China |
| authorships[3].author.id | https://openalex.org/A5035465152 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Min Jung Kong |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[3].institutions[0].id | https://openalex.org/I62853816 |
| authorships[3].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Min Kong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China |
| authorships[4].author.id | https://openalex.org/A5101305994 |
| authorships[4].author.orcid | https://orcid.org/0009-0009-1794-3324 |
| authorships[4].author.display_name | Gaoran Xu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3125743391 |
| authorships[4].affiliations[0].raw_affiliation_string | School of the Information Engineering, China University of Geosciences Beijing, Beijing 100083, China |
| authorships[4].institutions[0].id | https://openalex.org/I3125743391 |
| authorships[4].institutions[0].ror | https://ror.org/04q6c7p66 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I3125743391 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China University of Geosciences (Beijing) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Gaoran Xu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of the Information Engineering, China University of Geosciences Beijing, Beijing 100083, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/rs17162803 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CSCN: A Cross-Scan Semantic Cluster Network with Scene Coupling Attention for Remote Sensing Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs17162803 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs17162803 |
| primary_location.id | doi:10.3390/rs17162803 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs17162803 |
| publication_date | 2025-08-13 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1978879784, https://openalex.org/W4389371776, https://openalex.org/W4324383269, https://openalex.org/W4402264193, https://openalex.org/W4408691031, https://openalex.org/W4406118792, https://openalex.org/W4292636043, https://openalex.org/W4396641079, https://openalex.org/W3146366485, https://openalex.org/W4361274959, https://openalex.org/W6871418544, https://openalex.org/W6855611087, https://openalex.org/W4403061067, https://openalex.org/W4388720260, https://openalex.org/W3138516171, https://openalex.org/W4400952555, https://openalex.org/W4391097085, https://openalex.org/W2560023338, https://openalex.org/W6758454295, https://openalex.org/W2412782625, https://openalex.org/W2799213142, https://openalex.org/W2955058313, https://openalex.org/W3040304705, https://openalex.org/W3165745140, https://openalex.org/W3170544306, https://openalex.org/W4388802791, https://openalex.org/W4402698583, https://openalex.org/W6874900694, https://openalex.org/W4312914040, https://openalex.org/W3160284783, https://openalex.org/W4402291156, https://openalex.org/W4392653309, https://openalex.org/W4285219717, https://openalex.org/W6808081777, https://openalex.org/W4317603812, https://openalex.org/W3196294958, https://openalex.org/W4396721067, https://openalex.org/W4384820298, https://openalex.org/W4405001323, https://openalex.org/W4399428995, https://openalex.org/W2883725317, https://openalex.org/W3210298401, https://openalex.org/W2124509324, https://openalex.org/W2963921921, https://openalex.org/W4388979610, https://openalex.org/W2995170449, https://openalex.org/W4408960580, https://openalex.org/W4410246394, https://openalex.org/W4402899258, https://openalex.org/W4312345655, https://openalex.org/W2964309882, https://openalex.org/W3109301572, https://openalex.org/W4386076539, https://openalex.org/W6860719531, https://openalex.org/W6876906175, https://openalex.org/W4313065862, https://openalex.org/W2112796928, https://openalex.org/W6805224724, https://openalex.org/W4319216049, https://openalex.org/W4372259934, https://openalex.org/W4386172486, https://openalex.org/W4399618753, https://openalex.org/W4385574797, https://openalex.org/W4407451533, https://openalex.org/W4404688147, https://openalex.org/W4390603537, https://openalex.org/W4210727193, https://openalex.org/W4404787727, https://openalex.org/W2910281775, https://openalex.org/W4401504616 |
| referenced_works_count | 70 |
| abstract_inverted_index.a | 58, 65, 83 |
| abstract_inverted_index.be | 34 |
| abstract_inverted_index.by | 146 |
| abstract_inverted_index.in | 8, 181 |
| abstract_inverted_index.is | 111 |
| abstract_inverted_index.of | 12, 29, 68, 76, 133, 141, 201 |
| abstract_inverted_index.on | 52, 193 |
| abstract_inverted_index.to | 17, 37, 104, 113 |
| abstract_inverted_index.The | 0, 46, 190 |
| abstract_inverted_index.and | 42, 57, 73, 97, 129, 153, 159, 162, 170 |
| abstract_inverted_index.are | 119 |
| abstract_inverted_index.but | 184 |
| abstract_inverted_index.can | 33 |
| abstract_inverted_index.due | 16 |
| abstract_inverted_index.for | 21 |
| abstract_inverted_index.has | 4, 186 |
| abstract_inverted_index.its | 18 |
| abstract_inverted_index.low | 187 |
| abstract_inverted_index.new | 84 |
| abstract_inverted_index.not | 173 |
| abstract_inverted_index.the | 9, 26, 53, 109, 131, 139, 198, 202 |
| abstract_inverted_index.CSCA | 136 |
| abstract_inverted_index.CSCN | 172 |
| abstract_inverted_index.SFCC | 110, 169 |
| abstract_inverted_index.This | 80 |
| abstract_inverted_index.also | 185 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.from | 165 |
| abstract_inverted_index.into | 121, 150 |
| abstract_inverted_index.only | 174 |
| abstract_inverted_index.this | 207 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.CSCA, | 171 |
| abstract_inverted_index.Scene | 99 |
| abstract_inverted_index.dense | 54 |
| abstract_inverted_index.fixed | 59 |
| abstract_inverted_index.lacks | 74 |
| abstract_inverted_index.large | 39, 66 |
| abstract_inverted_index.local | 127 |
| abstract_inverted_index.model | 188, 204 |
| abstract_inverted_index.often | 63 |
| abstract_inverted_index.owing | 36 |
| abstract_inverted_index.paper | 81 |
| abstract_inverted_index.scene | 148, 157 |
| abstract_inverted_index.their | 38 |
| abstract_inverted_index.these | 106 |
| abstract_inverted_index.three | 194 |
| abstract_inverted_index.using | 156, 206 |
| abstract_inverted_index.which | 62 |
| abstract_inverted_index.(CSCA) | 102 |
| abstract_inverted_index.(CSCN) | 89 |
| abstract_inverted_index.(SFCC) | 96 |
| abstract_inverted_index.affine | 55 |
| abstract_inverted_index.amount | 67 |
| abstract_inverted_index.filter | 114 |
| abstract_inverted_index.global | 154 |
| abstract_inverted_index.images | 15, 32 |
| abstract_inverted_index.impact | 132 |
| abstract_inverted_index.object | 151 |
| abstract_inverted_index.relies | 51 |
| abstract_inverted_index.remote | 13, 30 |
| abstract_inverted_index.scenes | 183 |
| abstract_inverted_index.tokens | 118 |
| abstract_inverted_index.widely | 6 |
| abstract_inverted_index.Cluster | 87, 95 |
| abstract_inverted_index.Network | 88 |
| abstract_inverted_index.address | 105 |
| abstract_inverted_index.complex | 43, 142, 182 |
| abstract_inverted_index.feature | 117 |
| abstract_inverted_index.modules | 103 |
| abstract_inverted_index.objects | 180 |
| abstract_inverted_index.reduced | 35 |
| abstract_inverted_index.related | 123 |
| abstract_inverted_index.results | 192 |
| abstract_inverted_index.sensing | 14, 31 |
| abstract_inverted_index.spatial | 1, 44, 48, 143, 179 |
| abstract_inverted_index.vanilla | 47 |
| abstract_inverted_index.various | 177 |
| abstract_inverted_index.Coupling | 100 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.Semantic | 86, 92 |
| abstract_inverted_index.analysis | 27 |
| abstract_inverted_index.capacity | 20 |
| abstract_inverted_index.coupling | 158 |
| abstract_inverted_index.datasets | 196 |
| abstract_inverted_index.designed | 112 |
| abstract_inverted_index.employed | 7 |
| abstract_inverted_index.features | 128 |
| abstract_inverted_index.modeling | 22 |
| abstract_inverted_index.proposes | 82 |
| abstract_inverted_index.reducing | 130 |
| abstract_inverted_index.regions, | 124 |
| abstract_inverted_index.scanning | 60 |
| abstract_inverted_index.segments | 176 |
| abstract_inverted_index.semantic | 10, 71, 78 |
| abstract_inverted_index.variance | 41 |
| abstract_inverted_index.Attention | 101 |
| abstract_inverted_index.Combining | 168 |
| abstract_inverted_index.Filtering | 93 |
| abstract_inverted_index.addresses | 138 |
| abstract_inverted_index.approach. | 208 |
| abstract_inverted_index.attention | 2, 49, 164, 203 |
| abstract_inverted_index.benchmark | 195 |
| abstract_inverted_index.clustered | 120 |
| abstract_inverted_index.computing | 163 |
| abstract_inverted_index.different | 166 |
| abstract_inverted_index.generated | 205 |
| abstract_inverted_index.mechanism | 3, 50 |
| abstract_inverted_index.redundant | 69, 115 |
| abstract_inverted_index.variance. | 135 |
| abstract_inverted_index.Contextual | 94 |
| abstract_inverted_index.Cross-scan | 85, 98 |
| abstract_inverted_index.challenges | 140 |
| abstract_inverted_index.contextual | 70 |
| abstract_inverted_index.geographic | 144, 178 |
| abstract_inverted_index.integrated | 91 |
| abstract_inverted_index.introduces | 64 |
| abstract_inverted_index.long-range | 23 |
| abstract_inverted_index.mechanism, | 61 |
| abstract_inverted_index.mechanisms | 161 |
| abstract_inverted_index.operations | 56 |
| abstract_inverted_index.backgrounds | 145 |
| abstract_inverted_index.complexity. | 189 |
| abstract_inverted_index.decomposing | 147 |
| abstract_inverted_index.demonstrate | 197 |
| abstract_inverted_index.directions. | 167 |
| abstract_inverted_index.effectively | 125, 137, 175 |
| abstract_inverted_index.exceptional | 19 |
| abstract_inverted_index.identifying | 126 |
| abstract_inverted_index.information | 72, 149 |
| abstract_inverted_index.intra-class | 40, 134 |
| abstract_inverted_index.outstanding | 199 |
| abstract_inverted_index.performance | 28, 200 |
| abstract_inverted_index.structures. | 45 |
| abstract_inverted_index.connections. | 79 |
| abstract_inverted_index.experimental | 191 |
| abstract_inverted_index.information; | 116 |
| abstract_inverted_index.limitations. | 107 |
| abstract_inverted_index.segmentation | 11 |
| abstract_inverted_index.semantically | 122 |
| abstract_inverted_index.Specifically, | 108 |
| abstract_inverted_index.consideration | 75 |
| abstract_inverted_index.dependencies. | 24 |
| abstract_inverted_index.distributions | 152 |
| abstract_inverted_index.cross-scanning | 160 |
| abstract_inverted_index.representations, | 155 |
| abstract_inverted_index.cross-directional | 77 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5009114126 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I3125743391 |
| citation_normalized_percentile.value | 0.45458353 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |