CSSNet: Cascaded spatial shift network for multi-organ segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.compbiomed.2024.107955
Multi-organ segmentation is vital for clinical diagnosis and treatment. Although CNN and its extensions are popular in organ segmentation, they suffer from the local receptive field. In contrast, MultiLayer-Perceptron-based models (e.g., MLP-Mixer) have a global receptive field. However, these MLP-based models employ fully connected layers with many parameters and tend to overfit on sample-deficient medical image datasets. Therefore, we propose a Cascaded Spatial Shift Network, CSSNet, for multi-organ segmentation. Specifically, we design a novel cascaded spatial shift block to reduce the number of model parameters and aggregate feature segments in a cascaded way for efficient and effective feature extraction. Then, we propose a feature refinement network to aggregate multi-scale features with location information, and enhance the multi-scale features along the channel and spatial axis to obtain a high-quality feature map. Finally, we employ a self-attention-based fusion strategy to focus on the discriminative feature information for better multi-organ segmentation performance. Experimental results on the Synapse (multiply organs) and LiTS (liver & tumor) datasets demonstrate that our CSSNet achieves promising segmentation performance compared with CNN, MLP, and Transformer models. The source code will be available at https://github.com/zkyseu/CSSNet.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.compbiomed.2024.107955
- OA Status
- hybrid
- Cited By
- 13
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390618662
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390618662Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.compbiomed.2024.107955Digital Object Identifier
- Title
-
CSSNet: Cascaded spatial shift network for multi-organ segmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-05Full publication date if available
- Authors
-
Yeqin Shao, Kunyang Zhou, Lichi ZhangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.compbiomed.2024.107955Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.compbiomed.2024.107955Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Segmentation, Discriminative model, Pattern recognition (psychology), Overfitting, Feature (linguistics), Image segmentation, Feature extraction, Artificial neural network, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390618662 |
|---|---|
| doi | https://doi.org/10.1016/j.compbiomed.2024.107955 |
| ids.doi | https://doi.org/10.1016/j.compbiomed.2024.107955 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38215618 |
| ids.openalex | https://openalex.org/W4390618662 |
| fwci | 10.64795963 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008113 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Liver Neoplasms |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016571 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Neural Networks, Computer |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D012984 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Software |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D007091 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Image Processing, Computer-Assisted |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008113 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Liver Neoplasms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D016571 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Neural Networks, Computer |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D012984 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Software |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D007091 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Image Processing, Computer-Assisted |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008113 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Liver Neoplasms |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D016571 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Neural Networks, Computer |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D012984 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Software |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D007091 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Image Processing, Computer-Assisted |
| type | article |
| title | CSSNet: Cascaded spatial shift network for multi-organ segmentation |
| awards[0].id | https://openalex.org/G371180453 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61671255 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 170 |
| biblio.last_page | 107955 |
| biblio.first_page | 107955 |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9991999864578247 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2610 |
| apc_list.currency | USD |
| apc_list.value_usd | 2610 |
| apc_paid.value | 2610 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2610 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8140972852706909 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7095410227775574 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6933557391166687 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C97931131 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6150494813919067 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[3].display_name | Discriminative model |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6071293950080872 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C22019652 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6033015847206116 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[5].display_name | Overfitting |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5682845711708069 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4217495024204254 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C52622490 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41579577326774597 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[8].display_name | Feature extraction |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3844187259674072 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C138885662 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[10].display_name | Philosophy |
| concepts[11].id | https://openalex.org/C41895202 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[11].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8140972852706909 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7095410227775574 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.6933557391166687 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/discriminative-model |
| keywords[3].score | 0.6150494813919067 |
| keywords[3].display_name | Discriminative model |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.6071293950080872 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/overfitting |
| keywords[5].score | 0.6033015847206116 |
| keywords[5].display_name | Overfitting |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5682845711708069 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.4217495024204254 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/feature-extraction |
| keywords[8].score | 0.41579577326774597 |
| keywords[8].display_name | Feature extraction |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.3844187259674072 |
| keywords[9].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1016/j.compbiomed.2024.107955 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S44278595 |
| locations[0].source.issn | 0010-4825, 1879-0534 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0010-4825 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computers in Biology and Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computers in Biology and Medicine |
| locations[0].landing_page_url | https://doi.org/10.1016/j.compbiomed.2024.107955 |
| locations[1].id | pmid:38215618 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Computers in biology and medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38215618 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5082878649 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7868-2767 |
| authorships[0].author.display_name | Yeqin Shao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I199305430 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Transportation, Nantong University, Jiangsu, 226019, China |
| authorships[0].institutions[0].id | https://openalex.org/I199305430 |
| authorships[0].institutions[0].ror | https://ror.org/02afcvw97 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I199305430 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nantong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yeqin Shao |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Transportation, Nantong University, Jiangsu, 226019, China |
| authorships[1].author.id | https://openalex.org/A5076691807 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-1085-5571 |
| authorships[1].author.display_name | Kunyang Zhou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I199305430 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Zhangjian, Nantong University, Jiangsu, 226019, China |
| authorships[1].institutions[0].id | https://openalex.org/I199305430 |
| authorships[1].institutions[0].ror | https://ror.org/02afcvw97 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I199305430 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nantong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kunyang Zhou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Zhangjian, Nantong University, Jiangsu, 226019, China |
| authorships[2].author.id | https://openalex.org/A5006447298 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4396-4566 |
| authorships[2].author.display_name | Lichi Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China |
| authorships[2].institutions[0].id | https://openalex.org/I183067930 |
| authorships[2].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Lichi Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.compbiomed.2024.107955 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CSSNet: Cascaded spatial shift network for multi-organ segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W1574414179, https://openalex.org/W4297676672, https://openalex.org/W3009056573, https://openalex.org/W2922073769, https://openalex.org/W4281702477, https://openalex.org/W2490526372, https://openalex.org/W4376166922, https://openalex.org/W3040691452, https://openalex.org/W1522196789 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.compbiomed.2024.107955 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S44278595 |
| best_oa_location.source.issn | 0010-4825, 1879-0534 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0010-4825 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computers in Biology and Medicine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computers in Biology and Medicine |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.compbiomed.2024.107955 |
| primary_location.id | doi:10.1016/j.compbiomed.2024.107955 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S44278595 |
| primary_location.source.issn | 0010-4825, 1879-0534 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0010-4825 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computers in Biology and Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computers in Biology and Medicine |
| primary_location.landing_page_url | https://doi.org/10.1016/j.compbiomed.2024.107955 |
| publication_date | 2024-01-05 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6696428399, https://openalex.org/W2622064152, https://openalex.org/W2888358068, https://openalex.org/W2964227007, https://openalex.org/W3162475669, https://openalex.org/W3111741353, https://openalex.org/W4376607691, https://openalex.org/W4296351008, https://openalex.org/W2928133111, https://openalex.org/W3175515048, https://openalex.org/W3163465952, https://openalex.org/W4386159716, https://openalex.org/W3111255625, https://openalex.org/W2991630443, https://openalex.org/W3030810865, https://openalex.org/W3167842109, https://openalex.org/W2910094941, https://openalex.org/W4313641702, https://openalex.org/W4308861013, https://openalex.org/W3043944662, https://openalex.org/W3189759539, https://openalex.org/W2896457183, https://openalex.org/W3183804933, https://openalex.org/W4311250821, https://openalex.org/W2612690371, https://openalex.org/W3194513480, https://openalex.org/W4252857494, https://openalex.org/W2289076519, https://openalex.org/W3199613405, https://openalex.org/W4289489408, https://openalex.org/W4385373953, https://openalex.org/W3094502228, https://openalex.org/W4226016322, https://openalex.org/W3101639073, https://openalex.org/W3176153963 |
| referenced_works_count | 35 |
| abstract_inverted_index.& | 159 |
| abstract_inverted_index.a | 33, 60, 72, 90, 102, 126, 133 |
| abstract_inverted_index.In | 26 |
| abstract_inverted_index.at | 183 |
| abstract_inverted_index.be | 181 |
| abstract_inverted_index.in | 16, 89 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 82 |
| abstract_inverted_index.on | 52, 139, 151 |
| abstract_inverted_index.to | 50, 78, 106, 124, 137 |
| abstract_inverted_index.we | 58, 70, 100, 131 |
| abstract_inverted_index.CNN | 10 |
| abstract_inverted_index.The | 177 |
| abstract_inverted_index.and | 7, 11, 48, 85, 95, 113, 121, 156, 174 |
| abstract_inverted_index.are | 14 |
| abstract_inverted_index.for | 4, 66, 93, 144 |
| abstract_inverted_index.its | 12 |
| abstract_inverted_index.our | 164 |
| abstract_inverted_index.the | 22, 80, 115, 119, 140, 152 |
| abstract_inverted_index.way | 92 |
| abstract_inverted_index.CNN, | 172 |
| abstract_inverted_index.LiTS | 157 |
| abstract_inverted_index.MLP, | 173 |
| abstract_inverted_index.axis | 123 |
| abstract_inverted_index.code | 179 |
| abstract_inverted_index.from | 21 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.many | 46 |
| abstract_inverted_index.map. | 129 |
| abstract_inverted_index.tend | 49 |
| abstract_inverted_index.that | 163 |
| abstract_inverted_index.they | 19 |
| abstract_inverted_index.will | 180 |
| abstract_inverted_index.with | 45, 110, 171 |
| abstract_inverted_index.Shift | 63 |
| abstract_inverted_index.Then, | 99 |
| abstract_inverted_index.along | 118 |
| abstract_inverted_index.block | 77 |
| abstract_inverted_index.focus | 138 |
| abstract_inverted_index.fully | 42 |
| abstract_inverted_index.image | 55 |
| abstract_inverted_index.local | 23 |
| abstract_inverted_index.model | 83 |
| abstract_inverted_index.novel | 73 |
| abstract_inverted_index.organ | 17 |
| abstract_inverted_index.shift | 76 |
| abstract_inverted_index.these | 38 |
| abstract_inverted_index.vital | 3 |
| abstract_inverted_index.(e.g., | 30 |
| abstract_inverted_index.(liver | 158 |
| abstract_inverted_index.CSSNet | 165 |
| abstract_inverted_index.better | 145 |
| abstract_inverted_index.design | 71 |
| abstract_inverted_index.employ | 41, 132 |
| abstract_inverted_index.field. | 25, 36 |
| abstract_inverted_index.fusion | 135 |
| abstract_inverted_index.global | 34 |
| abstract_inverted_index.layers | 44 |
| abstract_inverted_index.models | 29, 40 |
| abstract_inverted_index.number | 81 |
| abstract_inverted_index.obtain | 125 |
| abstract_inverted_index.reduce | 79 |
| abstract_inverted_index.source | 178 |
| abstract_inverted_index.suffer | 20 |
| abstract_inverted_index.tumor) | 160 |
| abstract_inverted_index.CSSNet, | 65 |
| abstract_inverted_index.Spatial | 62 |
| abstract_inverted_index.Synapse | 153 |
| abstract_inverted_index.channel | 120 |
| abstract_inverted_index.enhance | 114 |
| abstract_inverted_index.feature | 87, 97, 103, 128, 142 |
| abstract_inverted_index.medical | 54 |
| abstract_inverted_index.models. | 176 |
| abstract_inverted_index.network | 105 |
| abstract_inverted_index.organs) | 155 |
| abstract_inverted_index.overfit | 51 |
| abstract_inverted_index.popular | 15 |
| abstract_inverted_index.propose | 59, 101 |
| abstract_inverted_index.results | 150 |
| abstract_inverted_index.spatial | 75, 122 |
| abstract_inverted_index.Although | 9 |
| abstract_inverted_index.Cascaded | 61 |
| abstract_inverted_index.Finally, | 130 |
| abstract_inverted_index.However, | 37 |
| abstract_inverted_index.Network, | 64 |
| abstract_inverted_index.achieves | 166 |
| abstract_inverted_index.cascaded | 74, 91 |
| abstract_inverted_index.clinical | 5 |
| abstract_inverted_index.compared | 170 |
| abstract_inverted_index.datasets | 161 |
| abstract_inverted_index.features | 109, 117 |
| abstract_inverted_index.location | 111 |
| abstract_inverted_index.segments | 88 |
| abstract_inverted_index.strategy | 136 |
| abstract_inverted_index.(multiply | 154 |
| abstract_inverted_index.MLP-based | 39 |
| abstract_inverted_index.aggregate | 86, 107 |
| abstract_inverted_index.available | 182 |
| abstract_inverted_index.connected | 43 |
| abstract_inverted_index.contrast, | 27 |
| abstract_inverted_index.datasets. | 56 |
| abstract_inverted_index.diagnosis | 6 |
| abstract_inverted_index.effective | 96 |
| abstract_inverted_index.efficient | 94 |
| abstract_inverted_index.promising | 167 |
| abstract_inverted_index.receptive | 24, 35 |
| abstract_inverted_index.MLP-Mixer) | 31 |
| abstract_inverted_index.Therefore, | 57 |
| abstract_inverted_index.extensions | 13 |
| abstract_inverted_index.parameters | 47, 84 |
| abstract_inverted_index.refinement | 104 |
| abstract_inverted_index.treatment. | 8 |
| abstract_inverted_index.Multi-organ | 0 |
| abstract_inverted_index.Transformer | 175 |
| abstract_inverted_index.demonstrate | 162 |
| abstract_inverted_index.extraction. | 98 |
| abstract_inverted_index.information | 143 |
| abstract_inverted_index.multi-organ | 67, 146 |
| abstract_inverted_index.multi-scale | 108, 116 |
| abstract_inverted_index.performance | 169 |
| abstract_inverted_index.Experimental | 149 |
| abstract_inverted_index.high-quality | 127 |
| abstract_inverted_index.information, | 112 |
| abstract_inverted_index.performance. | 148 |
| abstract_inverted_index.segmentation | 1, 147, 168 |
| abstract_inverted_index.Specifically, | 69 |
| abstract_inverted_index.segmentation, | 18 |
| abstract_inverted_index.segmentation. | 68 |
| abstract_inverted_index.discriminative | 141 |
| abstract_inverted_index.sample-deficient | 53 |
| abstract_inverted_index.self-attention-based | 134 |
| abstract_inverted_index.MultiLayer-Perceptron-based | 28 |
| abstract_inverted_index.https://github.com/zkyseu/CSSNet. | 184 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5082878649 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I199305430 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.97271427 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |