CTA-Net: A Gaze Estimation network based on Dual Feature Aggregation and Attention Cross Fusion Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-3377315/v1
Recent work has demonstrated the Transformer model is effective for computer vision tasks. However, the global self-attention mechanism utilized in Transformer models does not adequately consider the local structure and details of images, which may result in the loss of information and local details, causing decreased estimation accuracy in gaze estimation tasks when compared to convolution or sequential stacking methods. To address this issue, we propose a parallel CNNs-Transformer aggregation network (CTA-Net) for gaze estimation, which fully leverages the advantages of the Transformer model in modeling global context while the convolutional neural networks (CNNs) model in retaining local details. Specifically, Transformer and ResNet are deployed to extract facial and eye information, respectively. Additionally, an attention cross fusion (ACFusion) Block is embedded with CNN branch, which decomposes features in space and channels to supplement lost features, suppress noise, and help extract eye features more effectively. Finally, a dual-feature aggregation (DFA) module is proposed to effectively fuse the output features of both branches with the help feature a selection mechanism and a residual structure. Experimental results on the MPIIGaze and Gaze360 datasets demonstrate that our CTA-Net achieves state-of-the-art results.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-3377315/v1
- https://www.researchsquare.com/article/rs-3377315/latest.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387140218
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387140218Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-3377315/v1Digital Object Identifier
- Title
-
CTA-Net: A Gaze Estimation network based on Dual Feature Aggregation and Attention Cross FusionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-28Full publication date if available
- Authors
-
Chenxing Xia, Zhanpeng Tao, Wei Wang, Wenjun Zhao, Bin Ge, Xiuju Gao, Kuan‐Ching Li, Yan ZhangList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-3377315/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-3377315/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-3377315/latest.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Convolutional neural network, Transformer, Gaze, Pattern recognition (psychology), Computer vision, Engineering, Voltage, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387140218 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-3377315/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-3377315/v1 |
| ids.openalex | https://openalex.org/W4387140218 |
| fwci | 0.24403592 |
| type | preprint |
| title | CTA-Net: A Gaze Estimation network based on Dual Feature Aggregation and Attention Cross Fusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11707 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1709 |
| topics[0].subfield.display_name | Human-Computer Interaction |
| topics[0].display_name | Gaze Tracking and Assistive Technology |
| topics[1].id | https://openalex.org/T13731 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9908999800682068 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3322 |
| topics[1].subfield.display_name | Urban Studies |
| topics[1].display_name | Advanced Computing and Algorithms |
| topics[2].id | https://openalex.org/T11398 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9707000255584717 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1709 |
| topics[2].subfield.display_name | Human-Computer Interaction |
| topics[2].display_name | Hand Gesture Recognition Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7822014093399048 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6542236804962158 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6410000324249268 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C66322947 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6275792717933655 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[3].display_name | Transformer |
| concepts[4].id | https://openalex.org/C2779916870 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5444267392158508 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q14467155 |
| concepts[4].display_name | Gaze |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48465830087661743 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3724486231803894 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.08854898810386658 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C165801399 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[8].display_name | Voltage |
| concepts[9].id | https://openalex.org/C119599485 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[9].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7822014093399048 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6542236804962158 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6410000324249268 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/transformer |
| keywords[3].score | 0.6275792717933655 |
| keywords[3].display_name | Transformer |
| keywords[4].id | https://openalex.org/keywords/gaze |
| keywords[4].score | 0.5444267392158508 |
| keywords[4].display_name | Gaze |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.48465830087661743 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.3724486231803894 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.08854898810386658 |
| keywords[7].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-3377315/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-3377315/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-3377315/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5087739571 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0750-1265 |
| authorships[0].author.display_name | Chenxing Xia |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I184681353 |
| authorships[0].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chenxing Xia |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology |
| authorships[1].author.id | https://openalex.org/A5114110006 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhanpeng Tao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I184681353 |
| authorships[1].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhanpeng Tao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology |
| authorships[2].author.id | https://openalex.org/A5100391742 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7608-7438 |
| authorships[2].author.display_name | Wei Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2800556661 |
| authorships[2].affiliations[0].raw_affiliation_string | Anyang Cigarette Factory, China Tobacco Henan Industrial Co. Ltd |
| authorships[2].institutions[0].id | https://openalex.org/I2800556661 |
| authorships[2].institutions[0].ror | https://ror.org/030d08e08 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I2800556661 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China Tobacco |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wei Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Anyang Cigarette Factory, China Tobacco Henan Industrial Co. Ltd |
| authorships[3].author.id | https://openalex.org/A5101043517 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Wenjun Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I184681353 |
| authorships[3].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenjun Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology |
| authorships[4].author.id | https://openalex.org/A5033351506 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9050-1105 |
| authorships[4].author.display_name | Bin Ge |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology |
| authorships[4].institutions[0].id | https://openalex.org/I184681353 |
| authorships[4].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bin Ge |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology |
| authorships[5].author.id | https://openalex.org/A5068221881 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xiuju Gao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Electrical and Information Engineering, Anhui University of Science and Technology |
| authorships[5].institutions[0].id | https://openalex.org/I184681353 |
| authorships[5].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiuju Gao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Electrical and Information Engineering, Anhui University of Science and Technology |
| authorships[6].author.id | https://openalex.org/A5063188437 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1381-4364 |
| authorships[6].author.display_name | Kuan‐Ching Li |
| authorships[6].countries | TW, US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I177918364, https://openalex.org/I196272386 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Computer Science and Information Engineering, Providence University |
| authorships[6].institutions[0].id | https://openalex.org/I177918364 |
| authorships[6].institutions[0].ror | https://ror.org/03fcpsq87 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I177918364 |
| authorships[6].institutions[0].country_code | TW |
| authorships[6].institutions[0].display_name | Providence University |
| authorships[6].institutions[1].id | https://openalex.org/I196272386 |
| authorships[6].institutions[1].ror | https://ror.org/00rxpqe74 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I196272386 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Providence College |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kuan-Ching Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Computer Science and Information Engineering, Providence University |
| authorships[7].author.id | https://openalex.org/A5100456391 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2142-5094 |
| authorships[7].author.display_name | Yan Zhang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[7].affiliations[0].raw_affiliation_string | The School of Electronics and Information Engineering, Anhui University |
| authorships[7].institutions[0].id | https://openalex.org/I143868143 |
| authorships[7].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Anhui University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yan Zhang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | The School of Electronics and Information Engineering, Anhui University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-3377315/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CTA-Net: A Gaze Estimation network based on Dual Feature Aggregation and Attention Cross Fusion |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-12-05T23:21:25.405358 |
| primary_topic.id | https://openalex.org/T11707 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1709 |
| primary_topic.subfield.display_name | Human-Computer Interaction |
| primary_topic.display_name | Gaze Tracking and Assistive Technology |
| related_works | https://openalex.org/W1880689012, https://openalex.org/W3014378845, https://openalex.org/W4240909707, https://openalex.org/W2059546927, https://openalex.org/W1986970529, https://openalex.org/W2562758970, https://openalex.org/W4386072035, https://openalex.org/W2947492009, https://openalex.org/W1563178652, https://openalex.org/W2385108104 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-3377315/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-3377315/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3377315/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-3377315/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-3377315/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3377315/v1 |
| publication_date | 2023-09-28 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3199591511, https://openalex.org/W4296617358, https://openalex.org/W3091222644, https://openalex.org/W2902777242, https://openalex.org/W4210418316, https://openalex.org/W2413659642, https://openalex.org/W2077819131, https://openalex.org/W2806737393, https://openalex.org/W2167020116, https://openalex.org/W2034382626, https://openalex.org/W2623012778, https://openalex.org/W4234552385, https://openalex.org/W2921627265, https://openalex.org/W2895535699, https://openalex.org/W2998355285, https://openalex.org/W4312996499, https://openalex.org/W6604714958, https://openalex.org/W2963091558, https://openalex.org/W2001252859, https://openalex.org/W2579934302, https://openalex.org/W2027879843, https://openalex.org/W6601144205, https://openalex.org/W1493215903, https://openalex.org/W3013897564, https://openalex.org/W2468114283, https://openalex.org/W2598992495, https://openalex.org/W2765629358, https://openalex.org/W3096147990, https://openalex.org/W3096609285, https://openalex.org/W3170841864, https://openalex.org/W4225321830, https://openalex.org/W3163465952, https://openalex.org/W2884585870, https://openalex.org/W2961348656, https://openalex.org/W2986102820, https://openalex.org/W2557669140, https://openalex.org/W2963530216, https://openalex.org/W2961516132, https://openalex.org/W2105899846, https://openalex.org/W4210487241 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 67, 146, 166, 170 |
| abstract_inverted_index.To | 61 |
| abstract_inverted_index.an | 114 |
| abstract_inverted_index.in | 20, 37, 49, 85, 96, 128 |
| abstract_inverted_index.is | 8, 120, 151 |
| abstract_inverted_index.of | 32, 40, 81, 159 |
| abstract_inverted_index.on | 175 |
| abstract_inverted_index.or | 57 |
| abstract_inverted_index.to | 55, 106, 132, 153 |
| abstract_inverted_index.we | 65 |
| abstract_inverted_index.CNN | 123 |
| abstract_inverted_index.and | 30, 42, 102, 109, 130, 138, 169, 178 |
| abstract_inverted_index.are | 104 |
| abstract_inverted_index.eye | 110, 141 |
| abstract_inverted_index.for | 10, 73 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.may | 35 |
| abstract_inverted_index.not | 24 |
| abstract_inverted_index.our | 183 |
| abstract_inverted_index.the | 5, 15, 27, 38, 79, 82, 90, 156, 163, 176 |
| abstract_inverted_index.both | 160 |
| abstract_inverted_index.does | 23 |
| abstract_inverted_index.fuse | 155 |
| abstract_inverted_index.gaze | 50, 74 |
| abstract_inverted_index.help | 139, 164 |
| abstract_inverted_index.loss | 39 |
| abstract_inverted_index.lost | 134 |
| abstract_inverted_index.more | 143 |
| abstract_inverted_index.that | 182 |
| abstract_inverted_index.this | 63 |
| abstract_inverted_index.when | 53 |
| abstract_inverted_index.with | 122, 162 |
| abstract_inverted_index.work | 2 |
| abstract_inverted_index.(DFA) | 149 |
| abstract_inverted_index.Block | 119 |
| abstract_inverted_index.cross | 116 |
| abstract_inverted_index.fully | 77 |
| abstract_inverted_index.local | 28, 43, 98 |
| abstract_inverted_index.model | 7, 84, 95 |
| abstract_inverted_index.space | 129 |
| abstract_inverted_index.tasks | 52 |
| abstract_inverted_index.which | 34, 76, 125 |
| abstract_inverted_index.while | 89 |
| abstract_inverted_index.(CNNs) | 94 |
| abstract_inverted_index.Recent | 1 |
| abstract_inverted_index.ResNet | 103 |
| abstract_inverted_index.facial | 108 |
| abstract_inverted_index.fusion | 117 |
| abstract_inverted_index.global | 16, 87 |
| abstract_inverted_index.issue, | 64 |
| abstract_inverted_index.models | 22 |
| abstract_inverted_index.module | 150 |
| abstract_inverted_index.neural | 92 |
| abstract_inverted_index.noise, | 137 |
| abstract_inverted_index.output | 157 |
| abstract_inverted_index.result | 36 |
| abstract_inverted_index.tasks. | 13 |
| abstract_inverted_index.vision | 12 |
| abstract_inverted_index.CTA-Net | 184 |
| abstract_inverted_index.Gaze360 | 179 |
| abstract_inverted_index.address | 62 |
| abstract_inverted_index.branch, | 124 |
| abstract_inverted_index.causing | 45 |
| abstract_inverted_index.context | 88 |
| abstract_inverted_index.details | 31 |
| abstract_inverted_index.extract | 107, 140 |
| abstract_inverted_index.feature | 165 |
| abstract_inverted_index.images, | 33 |
| abstract_inverted_index.network | 71 |
| abstract_inverted_index.propose | 66 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.Finally, | 145 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.MPIIGaze | 177 |
| abstract_inverted_index.accuracy | 48 |
| abstract_inverted_index.achieves | 185 |
| abstract_inverted_index.branches | 161 |
| abstract_inverted_index.channels | 131 |
| abstract_inverted_index.compared | 54 |
| abstract_inverted_index.computer | 11 |
| abstract_inverted_index.consider | 26 |
| abstract_inverted_index.datasets | 180 |
| abstract_inverted_index.deployed | 105 |
| abstract_inverted_index.details, | 44 |
| abstract_inverted_index.details. | 99 |
| abstract_inverted_index.embedded | 121 |
| abstract_inverted_index.features | 127, 142, 158 |
| abstract_inverted_index.methods. | 60 |
| abstract_inverted_index.modeling | 86 |
| abstract_inverted_index.networks | 93 |
| abstract_inverted_index.parallel | 68 |
| abstract_inverted_index.proposed | 152 |
| abstract_inverted_index.residual | 171 |
| abstract_inverted_index.results. | 187 |
| abstract_inverted_index.stacking | 59 |
| abstract_inverted_index.suppress | 136 |
| abstract_inverted_index.utilized | 19 |
| abstract_inverted_index.(CTA-Net) | 72 |
| abstract_inverted_index.attention | 115 |
| abstract_inverted_index.decreased | 46 |
| abstract_inverted_index.effective | 9 |
| abstract_inverted_index.features, | 135 |
| abstract_inverted_index.leverages | 78 |
| abstract_inverted_index.mechanism | 18, 168 |
| abstract_inverted_index.retaining | 97 |
| abstract_inverted_index.selection | 167 |
| abstract_inverted_index.structure | 29 |
| abstract_inverted_index.(ACFusion) | 118 |
| abstract_inverted_index.adequately | 25 |
| abstract_inverted_index.advantages | 80 |
| abstract_inverted_index.decomposes | 126 |
| abstract_inverted_index.estimation | 47, 51 |
| abstract_inverted_index.sequential | 58 |
| abstract_inverted_index.structure. | 172 |
| abstract_inverted_index.supplement | 133 |
| abstract_inverted_index.Transformer | 6, 21, 83, 101 |
| abstract_inverted_index.aggregation | 70, 148 |
| abstract_inverted_index.convolution | 56 |
| abstract_inverted_index.demonstrate | 181 |
| abstract_inverted_index.effectively | 154 |
| abstract_inverted_index.estimation, | 75 |
| abstract_inverted_index.information | 41 |
| abstract_inverted_index.Experimental | 173 |
| abstract_inverted_index.demonstrated | 4 |
| abstract_inverted_index.dual-feature | 147 |
| abstract_inverted_index.effectively. | 144 |
| abstract_inverted_index.information, | 111 |
| abstract_inverted_index.Additionally, | 113 |
| abstract_inverted_index.Specifically, | 100 |
| abstract_inverted_index.convolutional | 91 |
| abstract_inverted_index.respectively. | 112 |
| abstract_inverted_index.self-attention | 17 |
| abstract_inverted_index.CNNs-Transformer | 69 |
| abstract_inverted_index.state-of-the-art | 186 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.50402915 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |