CTD2022: Exploration of different parameter optimization algorithms within the context of ACTS software framework Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.8119779
The particle track reconstruction is one of the most important part of the full event reconstruction chain and has a profound impact on the detector and physics performance. The underlying tracking software is also very complex and consists of a number of mathematically intense algorithms, each dealing with a particular tracking sub-process. These algorithms have many input parameters, to be supplied beforehand. However, it is very difficult to know the best configuration of these parameters that can yield in a highly efficient outcome. Currently, the input value of these parameters is decided mainly on the basis of prior experience and some brute force techniques. A parameter optimization approach that is able to automatically tune these parameters for high efficiency and low fake and duplicate rate is highly desirable. In this current study, we are exploring various machine learning based optimization methods to devise a suitable technique that can be used to optimize parameters in complex tracking environment. These methods are evaluated on the basis of a metric that targets high efficiency while keeping the duplicate and fake rates small. We are mainly focusing on the derivative free optimization approaches that can be applied to the problems involving non-differentiable loss functions. For our studies, we are considering the tracking algorithms defined within A Common Tracking Software (ACTS) framework. We are testing our methods using simulated data from ACTS software corresponding to the Generic detector and the ATLAS Inner Tracker (ITk) detector geometries.
Related Topics
- Type
- paratext
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.8119779
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4383298168
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4383298168Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.8119779Digital Object Identifier
- Title
-
CTD2022: Exploration of different parameter optimization algorithms within the context of ACTS software frameworkWork title
- Type
-
paratextOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-26Full publication date if available
- Authors
-
R. B. Garg, E. Hofgard, L. TompkinsList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.8119779Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.8119779Direct OA link when available
- Concepts
-
Computer science, Context (archaeology), Algorithm, Optimization algorithm, Software, Mathematical optimization, Programming language, Mathematics, Geology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4383298168 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.8119779 |
| ids.doi | https://doi.org/10.5281/zenodo.8119779 |
| ids.openalex | https://openalex.org/W4383298168 |
| fwci | 0.0 |
| type | paratext |
| title | CTD2022: Exploration of different parameter optimization algorithms within the context of ACTS software framework |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11159 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.3637999892234802 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Manufacturing Process and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7353429198265076 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779343474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.569434404373169 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[1].display_name | Context (archaeology) |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5137253999710083 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C2987595161 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49240267276763916 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Optimization algorithm |
| concepts[4].id | https://openalex.org/C2777904410 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48799222707748413 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[4].display_name | Software |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.20481058955192566 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C199360897 |
| concepts[6].level | 1 |
| concepts[6].score | 0.19656053185462952 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[6].display_name | Programming language |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.13570138812065125 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.05747273564338684 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| concepts[9].id | https://openalex.org/C151730666 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[9].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7353429198265076 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.569434404373169 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.5137253999710083 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/optimization-algorithm |
| keywords[3].score | 0.49240267276763916 |
| keywords[3].display_name | Optimization algorithm |
| keywords[4].id | https://openalex.org/keywords/software |
| keywords[4].score | 0.48799222707748413 |
| keywords[4].display_name | Software |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.20481058955192566 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/programming-language |
| keywords[6].score | 0.19656053185462952 |
| keywords[6].display_name | Programming language |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.13570138812065125 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.05747273564338684 |
| keywords[8].display_name | Geology |
| language | en |
| locations[0].id | doi:10.5281/zenodo.8119779 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.8119779 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5030134245 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2691-7963 |
| authorships[0].author.display_name | R. B. Garg |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[0].affiliations[0].raw_affiliation_string | Stanford University (US) |
| authorships[0].institutions[0].id | https://openalex.org/I97018004 |
| authorships[0].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Stanford University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Garg, Rocky Bala |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Stanford University (US) |
| authorships[1].author.id | https://openalex.org/A5006398971 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0745-9477 |
| authorships[1].author.display_name | E. Hofgard |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[1].affiliations[0].raw_affiliation_string | Stanford University (US) |
| authorships[1].institutions[0].id | https://openalex.org/I97018004 |
| authorships[1].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Stanford University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hofgard, Elyssa Frances |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Stanford University (US) |
| authorships[2].author.id | https://openalex.org/A5004245545 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8127-9653 |
| authorships[2].author.display_name | L. Tompkins |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[2].affiliations[0].raw_affiliation_string | Stanford University (US) |
| authorships[2].institutions[0].id | https://openalex.org/I97018004 |
| authorships[2].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Stanford University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Tompkins, Lauren Alexandra |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Stanford University (US) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.8119779 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CTD2022: Exploration of different parameter optimization algorithms within the context of ACTS software framework |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11159 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.3637999892234802 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Manufacturing Process and Optimization |
| related_works | https://openalex.org/W303980170, https://openalex.org/W2351491280, https://openalex.org/W2386767533, https://openalex.org/W2371447506, https://openalex.org/W3141679561, https://openalex.org/W2356158875, https://openalex.org/W2367699234, https://openalex.org/W2347547156, https://openalex.org/W2360518820, https://openalex.org/W4287863136 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.8119779 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.8119779 |
| primary_location.id | doi:10.5281/zenodo.8119779 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.8119779 |
| publication_date | 2023-06-26 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 104, 211 |
| abstract_inverted_index.a | 19, 39, 48, 79, 143, 165 |
| abstract_inverted_index.In | 128 |
| abstract_inverted_index.We | 179, 217 |
| abstract_inverted_index.be | 59, 148, 191 |
| abstract_inverted_index.in | 78, 153 |
| abstract_inverted_index.is | 4, 32, 64, 90, 109, 125 |
| abstract_inverted_index.it | 63 |
| abstract_inverted_index.of | 6, 11, 38, 41, 72, 87, 96, 164 |
| abstract_inverted_index.on | 22, 93, 161, 183 |
| abstract_inverted_index.to | 58, 67, 111, 141, 150, 193, 229 |
| abstract_inverted_index.we | 132, 203 |
| abstract_inverted_index.For | 200 |
| abstract_inverted_index.The | 0, 28 |
| abstract_inverted_index.and | 17, 25, 36, 99, 119, 122, 175, 233 |
| abstract_inverted_index.are | 133, 159, 180, 204, 218 |
| abstract_inverted_index.can | 76, 147, 190 |
| abstract_inverted_index.for | 116 |
| abstract_inverted_index.has | 18 |
| abstract_inverted_index.low | 120 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.our | 201, 220 |
| abstract_inverted_index.the | 7, 12, 23, 69, 84, 94, 162, 173, 184, 194, 206, 230, 234 |
| abstract_inverted_index.ACTS | 226 |
| abstract_inverted_index.able | 110 |
| abstract_inverted_index.also | 33 |
| abstract_inverted_index.best | 70 |
| abstract_inverted_index.data | 224 |
| abstract_inverted_index.each | 45 |
| abstract_inverted_index.fake | 121, 176 |
| abstract_inverted_index.free | 186 |
| abstract_inverted_index.from | 225 |
| abstract_inverted_index.full | 13 |
| abstract_inverted_index.have | 54 |
| abstract_inverted_index.high | 117, 169 |
| abstract_inverted_index.know | 68 |
| abstract_inverted_index.loss | 198 |
| abstract_inverted_index.many | 55 |
| abstract_inverted_index.most | 8 |
| abstract_inverted_index.part | 10 |
| abstract_inverted_index.rate | 124 |
| abstract_inverted_index.some | 100 |
| abstract_inverted_index.that | 75, 108, 146, 167, 189 |
| abstract_inverted_index.this | 129 |
| abstract_inverted_index.tune | 113 |
| abstract_inverted_index.used | 149 |
| abstract_inverted_index.very | 34, 65 |
| abstract_inverted_index.with | 47 |
| abstract_inverted_index.(ITk) | 238 |
| abstract_inverted_index.ATLAS | 235 |
| abstract_inverted_index.Inner | 236 |
| abstract_inverted_index.These | 52, 157 |
| abstract_inverted_index.based | 138 |
| abstract_inverted_index.basis | 95, 163 |
| abstract_inverted_index.brute | 101 |
| abstract_inverted_index.chain | 16 |
| abstract_inverted_index.event | 14 |
| abstract_inverted_index.force | 102 |
| abstract_inverted_index.input | 56, 85 |
| abstract_inverted_index.prior | 97 |
| abstract_inverted_index.rates | 177 |
| abstract_inverted_index.these | 73, 88, 114 |
| abstract_inverted_index.track | 2 |
| abstract_inverted_index.using | 222 |
| abstract_inverted_index.value | 86 |
| abstract_inverted_index.while | 171 |
| abstract_inverted_index.yield | 77 |
| abstract_inverted_index.(ACTS) | 215 |
| abstract_inverted_index.Common | 212 |
| abstract_inverted_index.devise | 142 |
| abstract_inverted_index.highly | 80, 126 |
| abstract_inverted_index.impact | 21 |
| abstract_inverted_index.mainly | 92, 181 |
| abstract_inverted_index.metric | 166 |
| abstract_inverted_index.number | 40 |
| abstract_inverted_index.small. | 178 |
| abstract_inverted_index.study, | 131 |
| abstract_inverted_index.within | 210 |
| abstract_inverted_index.Generic | 231 |
| abstract_inverted_index.Tracker | 237 |
| abstract_inverted_index.applied | 192 |
| abstract_inverted_index.complex | 35, 154 |
| abstract_inverted_index.current | 130 |
| abstract_inverted_index.dealing | 46 |
| abstract_inverted_index.decided | 91 |
| abstract_inverted_index.defined | 209 |
| abstract_inverted_index.intense | 43 |
| abstract_inverted_index.keeping | 172 |
| abstract_inverted_index.machine | 136 |
| abstract_inverted_index.methods | 140, 158, 221 |
| abstract_inverted_index.physics | 26 |
| abstract_inverted_index.targets | 168 |
| abstract_inverted_index.testing | 219 |
| abstract_inverted_index.various | 135 |
| abstract_inverted_index.However, | 62 |
| abstract_inverted_index.Software | 214 |
| abstract_inverted_index.Tracking | 213 |
| abstract_inverted_index.approach | 107 |
| abstract_inverted_index.consists | 37 |
| abstract_inverted_index.detector | 24, 232, 239 |
| abstract_inverted_index.focusing | 182 |
| abstract_inverted_index.learning | 137 |
| abstract_inverted_index.optimize | 151 |
| abstract_inverted_index.outcome. | 82 |
| abstract_inverted_index.particle | 1 |
| abstract_inverted_index.problems | 195 |
| abstract_inverted_index.profound | 20 |
| abstract_inverted_index.software | 31, 227 |
| abstract_inverted_index.studies, | 202 |
| abstract_inverted_index.suitable | 144 |
| abstract_inverted_index.supplied | 60 |
| abstract_inverted_index.tracking | 30, 50, 155, 207 |
| abstract_inverted_index.difficult | 66 |
| abstract_inverted_index.duplicate | 123, 174 |
| abstract_inverted_index.efficient | 81 |
| abstract_inverted_index.evaluated | 160 |
| abstract_inverted_index.exploring | 134 |
| abstract_inverted_index.important | 9 |
| abstract_inverted_index.involving | 196 |
| abstract_inverted_index.parameter | 105 |
| abstract_inverted_index.simulated | 223 |
| abstract_inverted_index.technique | 145 |
| abstract_inverted_index.Currently, | 83 |
| abstract_inverted_index.algorithms | 53, 208 |
| abstract_inverted_index.approaches | 188 |
| abstract_inverted_index.derivative | 185 |
| abstract_inverted_index.desirable. | 127 |
| abstract_inverted_index.efficiency | 118, 170 |
| abstract_inverted_index.experience | 98 |
| abstract_inverted_index.framework. | 216 |
| abstract_inverted_index.functions. | 199 |
| abstract_inverted_index.parameters | 74, 89, 115, 152 |
| abstract_inverted_index.particular | 49 |
| abstract_inverted_index.underlying | 29 |
| abstract_inverted_index.algorithms, | 44 |
| abstract_inverted_index.beforehand. | 61 |
| abstract_inverted_index.considering | 205 |
| abstract_inverted_index.geometries. | 240 |
| abstract_inverted_index.parameters, | 57 |
| abstract_inverted_index.techniques. | 103 |
| abstract_inverted_index.environment. | 156 |
| abstract_inverted_index.optimization | 106, 139, 187 |
| abstract_inverted_index.performance. | 27 |
| abstract_inverted_index.sub-process. | 51 |
| abstract_inverted_index.automatically | 112 |
| abstract_inverted_index.configuration | 71 |
| abstract_inverted_index.corresponding | 228 |
| abstract_inverted_index.mathematically | 42 |
| abstract_inverted_index.reconstruction | 3, 15 |
| abstract_inverted_index.non-differentiable | 197 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.14352707 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |