Customer Retention Modeling over the OTT Platform using Machine Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.17485/ijst/v17i42.2619
Objectives: Customer retention, a multifaceted issue that plagues the digital entertainment industry, particularly within the realm of Over-the-Top (OTT) platforms, poses a significant challenge, impacting revenue and sustainability. With the discontinuation of subscriptions or usage, retention not only impacts immediate revenue streams but also threatens the long-term sustainability of these platforms. Recognizing this challenge, this paper undertakes a comprehensive examination of predictive modeling methods tailored explicitly for forecasting customer retention within OTT platforms. Method: To construct predictive models, a diverse array of datasets is harnessed, encompassing a wide spectrum of customer-related variables. These datasets include demographic information, viewing history, subscription patterns, and various engagement metrics. Leveraging these datasets, advanced machine learning algorithms are deployed to develop robust models capable of predicting customer retention. Findings: The scrupulous study evaluates the implementation of a range of machine learning algorithms, including logistic regression, random forests, AdaBoost classifier, Decision Tree, and K nearest neighbor (KNN) classifier. Assessment metrics such as F1-score, recall, precision, and accuracy are employed to show the effectiveness of the employed models for customer retention modeling within OTT platforms. The results reveal that the highest accuracy of 80.40% is obtained using the AdaBoost classifier. Novelty: The research uses attribute significance analysis as a means of identifying the fundamental factors that impact client retention. OTT providers can receive important insights into the elements causing subscriber attrition by identifying these main drivers, which will help them develop tailored retention strategies. Keywords: Neural networks, Logistic regression, Random forests, Decision trees, KNN, AdaBoost classifier, Retention prediction
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17485/ijst/v17i42.2619
- OA Status
- diamond
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404851583
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404851583Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17485/ijst/v17i42.2619Digital Object Identifier
- Title
-
Customer Retention Modeling over the OTT Platform using Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-29Full publication date if available
- Authors
-
Upma Singh, Sandeep Singh, Tripti Rathee, Manav VaishList of authors in order
- Landing page
-
https://doi.org/10.17485/ijst/v17i42.2619Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.17485/ijst/v17i42.2619Direct OA link when available
- Concepts
-
Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404851583 |
|---|---|
| doi | https://doi.org/10.17485/ijst/v17i42.2619 |
| ids.doi | https://doi.org/10.17485/ijst/v17i42.2619 |
| ids.openalex | https://openalex.org/W4404851583 |
| fwci | 2.48144013 |
| type | article |
| title | Customer Retention Modeling over the OTT Platform using Machine Learning |
| biblio.issue | 42 |
| biblio.volume | 17 |
| biblio.last_page | 4371 |
| biblio.first_page | 4365 |
| topics[0].id | https://openalex.org/T14139 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.8152999877929688 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1403 |
| topics[0].subfield.display_name | Business and International Management |
| topics[0].display_name | E-commerce and Technology Innovations |
| topics[1].id | https://openalex.org/T10068 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.7878999710083008 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1802 |
| topics[1].subfield.display_name | Information Systems and Management |
| topics[1].display_name | Technology Adoption and User Behaviour |
| topics[2].id | https://openalex.org/T14260 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.7530999779701233 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Impact of AI and Big Data on Business and Society |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7808384895324707 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3268137574195862 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7808384895324707 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.3268137574195862 |
| keywords[1].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.17485/ijst/v17i42.2619 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764746358 |
| locations[0].source.issn | 0974-5645, 0974-6846 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0974-5645 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Indian Journal of Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4322615647 |
| locations[0].source.host_organization_name | Indian Society for Education and Environment |
| locations[0].source.host_organization_lineage | https://openalex.org/P4322615647 |
| locations[0].source.host_organization_lineage_names | Indian Society for Education and Environment |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Indian Journal Of Science And Technology |
| locations[0].landing_page_url | https://doi.org/10.17485/ijst/v17i42.2619 |
| locations[1].id | pmh:oai:zenodo.org:14778349 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Indian Journal of Science and Technology, 17(42), 4365-4371, (2024-11-18) |
| locations[1].landing_page_url | https://doi.org/10.17485/IJST/v17i42.2619 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5035351907 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6012-9485 |
| authorships[0].author.display_name | Upma Singh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Upma Singh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031335007 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8780-5124 |
| authorships[1].author.display_name | Sandeep Singh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sandeep Singh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5017760180 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tripti Rathee |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tripti Rathee |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114882388 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Manav Vaish |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Manav Vaish |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.17485/ijst/v17i42.2619 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Customer Retention Modeling over the OTT Platform using Machine Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14139 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.8152999877929688 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1403 |
| primary_topic.subfield.display_name | Business and International Management |
| primary_topic.display_name | E-commerce and Technology Innovations |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.17485/ijst/v17i42.2619 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764746358 |
| best_oa_location.source.issn | 0974-5645, 0974-6846 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0974-5645 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Indian Journal of Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4322615647 |
| best_oa_location.source.host_organization_name | Indian Society for Education and Environment |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4322615647 |
| best_oa_location.source.host_organization_lineage_names | Indian Society for Education and Environment |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Indian Journal Of Science And Technology |
| best_oa_location.landing_page_url | https://doi.org/10.17485/ijst/v17i42.2619 |
| primary_location.id | doi:10.17485/ijst/v17i42.2619 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764746358 |
| primary_location.source.issn | 0974-5645, 0974-6846 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0974-5645 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Indian Journal of Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4322615647 |
| primary_location.source.host_organization_name | Indian Society for Education and Environment |
| primary_location.source.host_organization_lineage | https://openalex.org/P4322615647 |
| primary_location.source.host_organization_lineage_names | Indian Society for Education and Environment |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Indian Journal Of Science And Technology |
| primary_location.landing_page_url | https://doi.org/10.17485/ijst/v17i42.2619 |
| publication_date | 2024-11-29 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.K | 147 |
| abstract_inverted_index.a | 3, 21, 57, 78, 86, 131, 201 |
| abstract_inverted_index.To | 74 |
| abstract_inverted_index.as | 155, 200 |
| abstract_inverted_index.by | 224 |
| abstract_inverted_index.is | 83, 187 |
| abstract_inverted_index.of | 16, 31, 48, 60, 81, 89, 119, 130, 133, 167, 185, 203 |
| abstract_inverted_index.or | 33 |
| abstract_inverted_index.to | 114, 163 |
| abstract_inverted_index.OTT | 71, 176, 212 |
| abstract_inverted_index.The | 124, 178, 194 |
| abstract_inverted_index.and | 26, 101, 146, 159 |
| abstract_inverted_index.are | 112, 161 |
| abstract_inverted_index.but | 42 |
| abstract_inverted_index.can | 214 |
| abstract_inverted_index.for | 66, 171 |
| abstract_inverted_index.not | 36 |
| abstract_inverted_index.the | 8, 14, 29, 45, 128, 165, 168, 182, 190, 205, 219 |
| abstract_inverted_index.KNN, | 246 |
| abstract_inverted_index.With | 28 |
| abstract_inverted_index.also | 43 |
| abstract_inverted_index.help | 231 |
| abstract_inverted_index.into | 218 |
| abstract_inverted_index.main | 227 |
| abstract_inverted_index.only | 37 |
| abstract_inverted_index.show | 164 |
| abstract_inverted_index.such | 154 |
| abstract_inverted_index.that | 6, 181, 208 |
| abstract_inverted_index.them | 232 |
| abstract_inverted_index.this | 52, 54 |
| abstract_inverted_index.uses | 196 |
| abstract_inverted_index.wide | 87 |
| abstract_inverted_index.will | 230 |
| abstract_inverted_index.(KNN) | 150 |
| abstract_inverted_index.(OTT) | 18 |
| abstract_inverted_index.These | 92 |
| abstract_inverted_index.Tree, | 145 |
| abstract_inverted_index.array | 80 |
| abstract_inverted_index.issue | 5 |
| abstract_inverted_index.means | 202 |
| abstract_inverted_index.paper | 55 |
| abstract_inverted_index.poses | 20 |
| abstract_inverted_index.range | 132 |
| abstract_inverted_index.realm | 15 |
| abstract_inverted_index.study | 126 |
| abstract_inverted_index.these | 49, 106, 226 |
| abstract_inverted_index.using | 189 |
| abstract_inverted_index.which | 229 |
| abstract_inverted_index.80.40% | 186 |
| abstract_inverted_index.Neural | 238 |
| abstract_inverted_index.Random | 242 |
| abstract_inverted_index.client | 210 |
| abstract_inverted_index.impact | 209 |
| abstract_inverted_index.models | 117, 170 |
| abstract_inverted_index.random | 140 |
| abstract_inverted_index.reveal | 180 |
| abstract_inverted_index.robust | 116 |
| abstract_inverted_index.trees, | 245 |
| abstract_inverted_index.usage, | 34 |
| abstract_inverted_index.within | 13, 70, 175 |
| abstract_inverted_index.Method: | 73 |
| abstract_inverted_index.capable | 118 |
| abstract_inverted_index.causing | 221 |
| abstract_inverted_index.develop | 115, 233 |
| abstract_inverted_index.digital | 9 |
| abstract_inverted_index.diverse | 79 |
| abstract_inverted_index.factors | 207 |
| abstract_inverted_index.highest | 183 |
| abstract_inverted_index.impacts | 38 |
| abstract_inverted_index.include | 94 |
| abstract_inverted_index.machine | 109, 134 |
| abstract_inverted_index.methods | 63 |
| abstract_inverted_index.metrics | 153 |
| abstract_inverted_index.models, | 77 |
| abstract_inverted_index.nearest | 148 |
| abstract_inverted_index.plagues | 7 |
| abstract_inverted_index.recall, | 157 |
| abstract_inverted_index.receive | 215 |
| abstract_inverted_index.results | 179 |
| abstract_inverted_index.revenue | 25, 40 |
| abstract_inverted_index.streams | 41 |
| abstract_inverted_index.various | 102 |
| abstract_inverted_index.viewing | 97 |
| abstract_inverted_index.AdaBoost | 142, 191, 247 |
| abstract_inverted_index.Customer | 1 |
| abstract_inverted_index.Decision | 144, 244 |
| abstract_inverted_index.Logistic | 240 |
| abstract_inverted_index.Novelty: | 193 |
| abstract_inverted_index.accuracy | 160, 184 |
| abstract_inverted_index.advanced | 108 |
| abstract_inverted_index.analysis | 199 |
| abstract_inverted_index.customer | 68, 121, 172 |
| abstract_inverted_index.datasets | 82, 93 |
| abstract_inverted_index.deployed | 113 |
| abstract_inverted_index.drivers, | 228 |
| abstract_inverted_index.elements | 220 |
| abstract_inverted_index.employed | 162, 169 |
| abstract_inverted_index.forests, | 141, 243 |
| abstract_inverted_index.history, | 98 |
| abstract_inverted_index.insights | 217 |
| abstract_inverted_index.learning | 110, 135 |
| abstract_inverted_index.logistic | 138 |
| abstract_inverted_index.metrics. | 104 |
| abstract_inverted_index.modeling | 62, 174 |
| abstract_inverted_index.neighbor | 149 |
| abstract_inverted_index.obtained | 188 |
| abstract_inverted_index.research | 195 |
| abstract_inverted_index.spectrum | 88 |
| abstract_inverted_index.tailored | 64, 234 |
| abstract_inverted_index.F1-score, | 156 |
| abstract_inverted_index.Findings: | 123 |
| abstract_inverted_index.Keywords: | 237 |
| abstract_inverted_index.Retention | 249 |
| abstract_inverted_index.attribute | 197 |
| abstract_inverted_index.attrition | 223 |
| abstract_inverted_index.construct | 75 |
| abstract_inverted_index.datasets, | 107 |
| abstract_inverted_index.evaluates | 127 |
| abstract_inverted_index.immediate | 39 |
| abstract_inverted_index.impacting | 24 |
| abstract_inverted_index.important | 216 |
| abstract_inverted_index.including | 137 |
| abstract_inverted_index.industry, | 11 |
| abstract_inverted_index.long-term | 46 |
| abstract_inverted_index.networks, | 239 |
| abstract_inverted_index.patterns, | 100 |
| abstract_inverted_index.providers | 213 |
| abstract_inverted_index.retention | 35, 69, 173, 235 |
| abstract_inverted_index.threatens | 44 |
| abstract_inverted_index.Assessment | 152 |
| abstract_inverted_index.Leveraging | 105 |
| abstract_inverted_index.algorithms | 111 |
| abstract_inverted_index.challenge, | 23, 53 |
| abstract_inverted_index.engagement | 103 |
| abstract_inverted_index.explicitly | 65 |
| abstract_inverted_index.harnessed, | 84 |
| abstract_inverted_index.platforms, | 19 |
| abstract_inverted_index.platforms. | 50, 72, 177 |
| abstract_inverted_index.precision, | 158 |
| abstract_inverted_index.predicting | 120 |
| abstract_inverted_index.prediction | 250 |
| abstract_inverted_index.predictive | 61, 76 |
| abstract_inverted_index.retention, | 2 |
| abstract_inverted_index.retention. | 122, 211 |
| abstract_inverted_index.scrupulous | 125 |
| abstract_inverted_index.subscriber | 222 |
| abstract_inverted_index.undertakes | 56 |
| abstract_inverted_index.variables. | 91 |
| abstract_inverted_index.Objectives: | 0 |
| abstract_inverted_index.Recognizing | 51 |
| abstract_inverted_index.algorithms, | 136 |
| abstract_inverted_index.classifier, | 143, 248 |
| abstract_inverted_index.classifier. | 151, 192 |
| abstract_inverted_index.demographic | 95 |
| abstract_inverted_index.examination | 59 |
| abstract_inverted_index.forecasting | 67 |
| abstract_inverted_index.fundamental | 206 |
| abstract_inverted_index.identifying | 204, 225 |
| abstract_inverted_index.regression, | 139, 241 |
| abstract_inverted_index.significant | 22 |
| abstract_inverted_index.strategies. | 236 |
| abstract_inverted_index.Over-the-Top | 17 |
| abstract_inverted_index.encompassing | 85 |
| abstract_inverted_index.information, | 96 |
| abstract_inverted_index.multifaceted | 4 |
| abstract_inverted_index.particularly | 12 |
| abstract_inverted_index.significance | 198 |
| abstract_inverted_index.subscription | 99 |
| abstract_inverted_index.comprehensive | 58 |
| abstract_inverted_index.effectiveness | 166 |
| abstract_inverted_index.entertainment | 10 |
| abstract_inverted_index.subscriptions | 32 |
| abstract_inverted_index.implementation | 129 |
| abstract_inverted_index.sustainability | 47 |
| abstract_inverted_index.discontinuation | 30 |
| abstract_inverted_index.sustainability. | 27 |
| abstract_inverted_index.customer-related | 90 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.88658307 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |