Customised artificial intelligence toolbox for detecting diabetic retinopathy with confocal truecolor fundus images using object detection methods Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.4103/tjosr.tjosr_83_22
Purpose: A novel convolutional neural network approach in detecting diabetic retinopathy (DR) was employed to overcome the black box dilemma in artificial intelligence (AI). In addition to identification and classification, this tool is intended to identify signs such as microaneurysms, hard exudates, dot-blot haemorrhages and flame-shaped haemorrhages, and neovascularisation with the help of customised human annotations. Design: This is a prospective cross-sectional study. Subjects: Eight thousand confocal high-resolution fundus images of 5,174 patients were included in this study. Methods: Dataset involved 8,000 fundus images of DR with 5,200 images for training, 1,400 images for validation and 1,400 images for the held-out test. The 1,400 images used for the held-out test were non-annotated fundus images. You Only Look Once (YOLO) 5 algorithms were used for detection. Main Outcome Measures: The AI tool was evaluated with mean average precision, objectness loss, classification loss, precision and recall. The number of images in which all the clinical signs of DR were correctly predicted, wrongly predicted and missed were also calculated. Results: Tests showed consistent increments from 79.5% to 91% accuracy in predicting the diagnosis, severity, and clinical fundus signs pertaining to DR. The overall sensitivity was 81.6% and the specificity was 100%. Conclusion: To our knowledge, this is the first paper to train fundus images with high-resolution confocal images and annotate every clinical sign of the DR fundus along with diagnosis and severity for accurate predictions with their various fundus signs, thus overcoming the black box dilemma. With constant training via a feedback mechanism, there was a continuous upsurge in prediction accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4103/tjosr.tjosr_83_22
- OA Status
- diamond
- Cited By
- 4
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4328022594
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4328022594Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4103/tjosr.tjosr_83_22Digital Object Identifier
- Title
-
Customised artificial intelligence toolbox for detecting diabetic retinopathy with confocal truecolor fundus images using object detection methodsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Prasanna Venkatesh Ramesh, Shruthy Vaishali Ramesh, Tamilselvan Subramanian, Prajnya Ray, Aji Kunnath Devadas, SheikMohamed Ansar, Ramesh Rajasekaran, Sathyan ParthasarathiList of authors in order
- Landing page
-
https://doi.org/10.4103/tjosr.tjosr_83_22Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.4103/tjosr.tjosr_83_22Direct OA link when available
- Concepts
-
Diabetic retinopathy, Fundus (uterus), Toolbox, Artificial intelligence, Computer science, Confocal, Computer vision, Pattern recognition (psychology), Ophthalmology, Medicine, Diabetes mellitus, Optics, Physics, Programming language, EndocrinologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4328022594 |
|---|---|
| doi | https://doi.org/10.4103/tjosr.tjosr_83_22 |
| ids.doi | https://doi.org/10.4103/tjosr.tjosr_83_22 |
| ids.openalex | https://openalex.org/W4328022594 |
| fwci | 1.23621986 |
| type | article |
| title | Customised artificial intelligence toolbox for detecting diabetic retinopathy with confocal truecolor fundus images using object detection methods |
| biblio.issue | 1 |
| biblio.volume | 61 |
| biblio.last_page | 57 |
| biblio.first_page | 57 |
| topics[0].id | https://openalex.org/T11438 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Retinal Imaging and Analysis |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9891999959945679 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779829184 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7511247396469116 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q631361 |
| concepts[0].display_name | Diabetic retinopathy |
| concepts[1].id | https://openalex.org/C2776391266 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7338111400604248 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q9612 |
| concepts[1].display_name | Fundus (uterus) |
| concepts[2].id | https://openalex.org/C2777655017 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7147930860519409 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1501161 |
| concepts[2].display_name | Toolbox |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6116488575935364 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5695573687553406 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C136009344 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4975424110889435 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q336201 |
| concepts[5].display_name | Confocal |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43667930364608765 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42692628502845764 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C118487528 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4023304581642151 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q161437 |
| concepts[8].display_name | Ophthalmology |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3075084984302521 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C555293320 |
| concepts[10].level | 2 |
| concepts[10].score | 0.12778723239898682 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[10].display_name | Diabetes mellitus |
| concepts[11].id | https://openalex.org/C120665830 |
| concepts[11].level | 1 |
| concepts[11].score | 0.08804282546043396 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[11].display_name | Optics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.06133046746253967 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C134018914 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[14].display_name | Endocrinology |
| keywords[0].id | https://openalex.org/keywords/diabetic-retinopathy |
| keywords[0].score | 0.7511247396469116 |
| keywords[0].display_name | Diabetic retinopathy |
| keywords[1].id | https://openalex.org/keywords/fundus |
| keywords[1].score | 0.7338111400604248 |
| keywords[1].display_name | Fundus (uterus) |
| keywords[2].id | https://openalex.org/keywords/toolbox |
| keywords[2].score | 0.7147930860519409 |
| keywords[2].display_name | Toolbox |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6116488575935364 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5695573687553406 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/confocal |
| keywords[5].score | 0.4975424110889435 |
| keywords[5].display_name | Confocal |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.43667930364608765 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.42692628502845764 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/ophthalmology |
| keywords[8].score | 0.4023304581642151 |
| keywords[8].display_name | Ophthalmology |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.3075084984302521 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[10].score | 0.12778723239898682 |
| keywords[10].display_name | Diabetes mellitus |
| keywords[11].id | https://openalex.org/keywords/optics |
| keywords[11].score | 0.08804282546043396 |
| keywords[11].display_name | Optics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.06133046746253967 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.4103/tjosr.tjosr_83_22 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172392 |
| locations[0].source.issn | 2589-4528, 2589-4536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2589-4528 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | TNOA Journal of Ophthalmic Science and Research |
| locations[0].source.host_organization | https://openalex.org/P4310320448 |
| locations[0].source.host_organization_name | Medknow |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320448, https://openalex.org/P4310318547 |
| locations[0].source.host_organization_lineage_names | Medknow, Wolters Kluwer |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | TNOA Journal of Ophthalmic Science and Research |
| locations[0].landing_page_url | https://doi.org/10.4103/tjosr.tjosr_83_22 |
| locations[1].id | pmh:oai:doaj.org/article:d4a179478db240b299d9ce3ce2d4438a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | TNOA Journal of Ophthalmic Science and Research, Vol 61, Iss 1, Pp 57-66 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/d4a179478db240b299d9ce3ce2d4438a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5068936596 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6105-8666 |
| authorships[0].author.display_name | Prasanna Venkatesh Ramesh |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210113901 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Glaucoma and Research, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[0].institutions[0].id | https://openalex.org/I4210113901 |
| authorships[0].institutions[0].ror | https://ror.org/01wcey047 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210113901 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Joseph Eye Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | PrasannaVenkatesh Ramesh |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Glaucoma and Research, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[1].author.id | https://openalex.org/A5101654948 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7706-1480 |
| authorships[1].author.display_name | Shruthy Vaishali Ramesh |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210113901 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Cataract and Refractive Surgery, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[1].institutions[0].id | https://openalex.org/I4210113901 |
| authorships[1].institutions[0].ror | https://ror.org/01wcey047 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210113901 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Joseph Eye Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | ShruthyVaishali Ramesh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Cataract and Refractive Surgery, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[2].author.id | https://openalex.org/A5055962970 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tamilselvan Subramanian |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210113901 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[2].institutions[0].id | https://openalex.org/I4210113901 |
| authorships[2].institutions[0].ror | https://ror.org/01wcey047 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210113901 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Joseph Eye Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tamilselvan Subramanian |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Artificial Intelligence, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[3].author.id | https://openalex.org/A5023692422 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6188-0078 |
| authorships[3].author.display_name | Prajnya Ray |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210113901 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Optometry and Visual Science, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[3].institutions[0].id | https://openalex.org/I4210113901 |
| authorships[3].institutions[0].ror | https://ror.org/01wcey047 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210113901 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Joseph Eye Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Prajnya Ray |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Optometry and Visual Science, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[4].author.id | https://openalex.org/A5026151032 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Aji Kunnath Devadas |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210113901 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Optometry and Visual Science, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[4].institutions[0].id | https://openalex.org/I4210113901 |
| authorships[4].institutions[0].ror | https://ror.org/01wcey047 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210113901 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Joseph Eye Hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | AjiKunnath Devadas |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Optometry and Visual Science, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[5].author.id | https://openalex.org/A5112911940 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | SheikMohamed Ansar |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biostatistics, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | SheikMohamed Ansar |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biostatistics, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[6].author.id | https://openalex.org/A5115595364 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Ramesh Rajasekaran |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210109571 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Paediatric Ophthalmology and Strabismus, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[6].institutions[0].id | https://openalex.org/I4210109571 |
| authorships[6].institutions[0].ror | https://ror.org/01zbhpb91 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210109571 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Meenakshi Ammal Dental College and Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ramesh Rajasekaran |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Paediatric Ophthalmology and Strabismus, Mahathma Eye Hospital Private Limited, Trichy, Tamil Nadu, India |
| authorships[7].author.id | https://openalex.org/A5107911419 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Sathyan Parthasarathi |
| authorships[7].countries | IN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210128379 |
| authorships[7].affiliations[0].raw_affiliation_string | Director, Sathyan Eye Care Hospital and Coimbatore Glaucoma Foundation, Coimbatore, Tamil Nadu, India |
| authorships[7].institutions[0].id | https://openalex.org/I4210128379 |
| authorships[7].institutions[0].ror | https://ror.org/02pfaex92 |
| authorships[7].institutions[0].type | nonprofit |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210128379 |
| authorships[7].institutions[0].country_code | IN |
| authorships[7].institutions[0].display_name | Orthopaedic Research Group |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Sathyan Parthasarathi |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Director, Sathyan Eye Care Hospital and Coimbatore Glaucoma Foundation, Coimbatore, Tamil Nadu, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.4103/tjosr.tjosr_83_22 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Customised artificial intelligence toolbox for detecting diabetic retinopathy with confocal truecolor fundus images using object detection methods |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11438 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Retinal Imaging and Analysis |
| related_works | https://openalex.org/W1980571360, https://openalex.org/W3176448898, https://openalex.org/W4379115808, https://openalex.org/W3207986206, https://openalex.org/W2352634490, https://openalex.org/W2429379476, https://openalex.org/W1979866946, https://openalex.org/W4226141369, https://openalex.org/W2413307231, https://openalex.org/W4361800274 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.4103/tjosr.tjosr_83_22 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172392 |
| best_oa_location.source.issn | 2589-4528, 2589-4536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2589-4528 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | TNOA Journal of Ophthalmic Science and Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320448 |
| best_oa_location.source.host_organization_name | Medknow |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320448, https://openalex.org/P4310318547 |
| best_oa_location.source.host_organization_lineage_names | Medknow, Wolters Kluwer |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | TNOA Journal of Ophthalmic Science and Research |
| best_oa_location.landing_page_url | https://doi.org/10.4103/tjosr.tjosr_83_22 |
| primary_location.id | doi:10.4103/tjosr.tjosr_83_22 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172392 |
| primary_location.source.issn | 2589-4528, 2589-4536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2589-4528 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | TNOA Journal of Ophthalmic Science and Research |
| primary_location.source.host_organization | https://openalex.org/P4310320448 |
| primary_location.source.host_organization_name | Medknow |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320448, https://openalex.org/P4310318547 |
| primary_location.source.host_organization_lineage_names | Medknow, Wolters Kluwer |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | TNOA Journal of Ophthalmic Science and Research |
| primary_location.landing_page_url | https://doi.org/10.4103/tjosr.tjosr_83_22 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2982580298, https://openalex.org/W2971211885, https://openalex.org/W2886801379, https://openalex.org/W3202616615, https://openalex.org/W3158522809, https://openalex.org/W2908201961, https://openalex.org/W2905810301, https://openalex.org/W2164510796, https://openalex.org/W2161424516, https://openalex.org/W2901350546, https://openalex.org/W2898192966, https://openalex.org/W3165183789, https://openalex.org/W6741512680, https://openalex.org/W2894490502, https://openalex.org/W4220951011, https://openalex.org/W4289786526, https://openalex.org/W4282933693, https://openalex.org/W2963712920 |
| referenced_works_count | 18 |
| abstract_inverted_index.5 | 119 |
| abstract_inverted_index.A | 1 |
| abstract_inverted_index.a | 59, 247, 252 |
| abstract_inverted_index.AI | 129 |
| abstract_inverted_index.DR | 85, 155, 222 |
| abstract_inverted_index.In | 24 |
| abstract_inverted_index.To | 199 |
| abstract_inverted_index.as | 38 |
| abstract_inverted_index.in | 7, 20, 75, 148, 176, 255 |
| abstract_inverted_index.is | 32, 58, 203 |
| abstract_inverted_index.of | 52, 70, 84, 146, 154, 220 |
| abstract_inverted_index.to | 14, 26, 34, 173, 186, 207 |
| abstract_inverted_index.91% | 174 |
| abstract_inverted_index.DR. | 187 |
| abstract_inverted_index.The | 102, 128, 144, 188 |
| abstract_inverted_index.You | 114 |
| abstract_inverted_index.all | 150 |
| abstract_inverted_index.and | 28, 44, 47, 95, 142, 161, 181, 193, 215, 227 |
| abstract_inverted_index.box | 18, 241 |
| abstract_inverted_index.for | 89, 93, 98, 106, 123, 229 |
| abstract_inverted_index.our | 200 |
| abstract_inverted_index.the | 16, 50, 99, 107, 151, 178, 194, 204, 221, 239 |
| abstract_inverted_index.via | 246 |
| abstract_inverted_index.was | 12, 131, 191, 196, 251 |
| abstract_inverted_index.(DR) | 11 |
| abstract_inverted_index.Look | 116 |
| abstract_inverted_index.Main | 125 |
| abstract_inverted_index.Once | 117 |
| abstract_inverted_index.Only | 115 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.With | 243 |
| abstract_inverted_index.also | 164 |
| abstract_inverted_index.from | 171 |
| abstract_inverted_index.hard | 40 |
| abstract_inverted_index.help | 51 |
| abstract_inverted_index.mean | 134 |
| abstract_inverted_index.sign | 219 |
| abstract_inverted_index.such | 37 |
| abstract_inverted_index.test | 109 |
| abstract_inverted_index.this | 30, 76, 202 |
| abstract_inverted_index.thus | 237 |
| abstract_inverted_index.tool | 31, 130 |
| abstract_inverted_index.used | 105, 122 |
| abstract_inverted_index.were | 73, 110, 121, 156, 163 |
| abstract_inverted_index.with | 49, 86, 133, 211, 225, 232 |
| abstract_inverted_index.(AI). | 23 |
| abstract_inverted_index.1,400 | 91, 96, 103 |
| abstract_inverted_index.100%. | 197 |
| abstract_inverted_index.5,174 | 71 |
| abstract_inverted_index.5,200 | 87 |
| abstract_inverted_index.79.5% | 172 |
| abstract_inverted_index.8,000 | 81 |
| abstract_inverted_index.81.6% | 192 |
| abstract_inverted_index.Eight | 64 |
| abstract_inverted_index.Tests | 167 |
| abstract_inverted_index.along | 224 |
| abstract_inverted_index.black | 17, 240 |
| abstract_inverted_index.every | 217 |
| abstract_inverted_index.first | 205 |
| abstract_inverted_index.human | 54 |
| abstract_inverted_index.loss, | 138, 140 |
| abstract_inverted_index.novel | 2 |
| abstract_inverted_index.paper | 206 |
| abstract_inverted_index.signs | 36, 153, 184 |
| abstract_inverted_index.test. | 101 |
| abstract_inverted_index.their | 233 |
| abstract_inverted_index.there | 250 |
| abstract_inverted_index.train | 208 |
| abstract_inverted_index.which | 149 |
| abstract_inverted_index.(YOLO) | 118 |
| abstract_inverted_index.fundus | 68, 82, 112, 183, 209, 223, 235 |
| abstract_inverted_index.images | 69, 83, 88, 92, 97, 104, 147, 210, 214 |
| abstract_inverted_index.missed | 162 |
| abstract_inverted_index.neural | 4 |
| abstract_inverted_index.number | 145 |
| abstract_inverted_index.showed | 168 |
| abstract_inverted_index.signs, | 236 |
| abstract_inverted_index.study. | 62, 77 |
| abstract_inverted_index.Dataset | 79 |
| abstract_inverted_index.Design: | 56 |
| abstract_inverted_index.Outcome | 126 |
| abstract_inverted_index.average | 135 |
| abstract_inverted_index.dilemma | 19 |
| abstract_inverted_index.images. | 113 |
| abstract_inverted_index.network | 5 |
| abstract_inverted_index.overall | 189 |
| abstract_inverted_index.recall. | 143 |
| abstract_inverted_index.upsurge | 254 |
| abstract_inverted_index.various | 234 |
| abstract_inverted_index.wrongly | 159 |
| abstract_inverted_index.Methods: | 78 |
| abstract_inverted_index.Purpose: | 0 |
| abstract_inverted_index.Results: | 166 |
| abstract_inverted_index.accuracy | 175 |
| abstract_inverted_index.accurate | 230 |
| abstract_inverted_index.addition | 25 |
| abstract_inverted_index.annotate | 216 |
| abstract_inverted_index.approach | 6 |
| abstract_inverted_index.clinical | 152, 182, 218 |
| abstract_inverted_index.confocal | 66, 213 |
| abstract_inverted_index.constant | 244 |
| abstract_inverted_index.diabetic | 9 |
| abstract_inverted_index.dilemma. | 242 |
| abstract_inverted_index.dot-blot | 42 |
| abstract_inverted_index.employed | 13 |
| abstract_inverted_index.feedback | 248 |
| abstract_inverted_index.held-out | 100, 108 |
| abstract_inverted_index.identify | 35 |
| abstract_inverted_index.included | 74 |
| abstract_inverted_index.intended | 33 |
| abstract_inverted_index.involved | 80 |
| abstract_inverted_index.overcome | 15 |
| abstract_inverted_index.patients | 72 |
| abstract_inverted_index.severity | 228 |
| abstract_inverted_index.thousand | 65 |
| abstract_inverted_index.training | 245 |
| abstract_inverted_index.Measures: | 127 |
| abstract_inverted_index.Subjects: | 63 |
| abstract_inverted_index.accuracy. | 257 |
| abstract_inverted_index.correctly | 157 |
| abstract_inverted_index.detecting | 8 |
| abstract_inverted_index.diagnosis | 226 |
| abstract_inverted_index.evaluated | 132 |
| abstract_inverted_index.exudates, | 41 |
| abstract_inverted_index.precision | 141 |
| abstract_inverted_index.predicted | 160 |
| abstract_inverted_index.severity, | 180 |
| abstract_inverted_index.training, | 90 |
| abstract_inverted_index.algorithms | 120 |
| abstract_inverted_index.artificial | 21 |
| abstract_inverted_index.consistent | 169 |
| abstract_inverted_index.continuous | 253 |
| abstract_inverted_index.customised | 53 |
| abstract_inverted_index.detection. | 124 |
| abstract_inverted_index.diagnosis, | 179 |
| abstract_inverted_index.increments | 170 |
| abstract_inverted_index.knowledge, | 201 |
| abstract_inverted_index.mechanism, | 249 |
| abstract_inverted_index.objectness | 137 |
| abstract_inverted_index.overcoming | 238 |
| abstract_inverted_index.pertaining | 185 |
| abstract_inverted_index.precision, | 136 |
| abstract_inverted_index.predicted, | 158 |
| abstract_inverted_index.predicting | 177 |
| abstract_inverted_index.prediction | 256 |
| abstract_inverted_index.validation | 94 |
| abstract_inverted_index.Conclusion: | 198 |
| abstract_inverted_index.calculated. | 165 |
| abstract_inverted_index.predictions | 231 |
| abstract_inverted_index.prospective | 60 |
| abstract_inverted_index.retinopathy | 10 |
| abstract_inverted_index.sensitivity | 190 |
| abstract_inverted_index.specificity | 195 |
| abstract_inverted_index.annotations. | 55 |
| abstract_inverted_index.flame-shaped | 45 |
| abstract_inverted_index.haemorrhages | 43 |
| abstract_inverted_index.intelligence | 22 |
| abstract_inverted_index.convolutional | 3 |
| abstract_inverted_index.haemorrhages, | 46 |
| abstract_inverted_index.non-annotated | 111 |
| abstract_inverted_index.classification | 139 |
| abstract_inverted_index.identification | 27 |
| abstract_inverted_index.classification, | 29 |
| abstract_inverted_index.cross-sectional | 61 |
| abstract_inverted_index.high-resolution | 67, 212 |
| abstract_inverted_index.microaneurysms, | 39 |
| abstract_inverted_index.neovascularisation | 48 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5068936596 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I4210113901 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.76529311 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |