Customizing Student Networks From Heterogeneous Teachers via Adaptive Knowledge Amalgamation Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1908.07121
A massive number of well-trained deep networks have been released by developers online. These networks may focus on different tasks and in many cases are optimized for different datasets. In this paper, we study how to exploit such heterogeneous pre-trained networks, known as teachers, so as to train a customized student network that tackles a set of selective tasks defined by the user. We assume no human annotations are available, and each teacher may be either single- or multi-task. To this end, we introduce a dual-step strategy that first extracts the task-specific knowledge from the heterogeneous teachers sharing the same sub-task, and then amalgamates the extracted knowledge to build the student network. To facilitate the training, we employ a selective learning scheme where, for each unlabelled sample, the student learns adaptively from only the teacher with the least prediction ambiguity. We evaluate the proposed approach on several datasets and experimental results demonstrate that the student, learned by such adaptive knowledge amalgamation, achieves performances even better than those of the teachers.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1908.07121
- https://arxiv.org/pdf/1908.07121
- OA Status
- green
- Cited By
- 10
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2969933406
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2969933406Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1908.07121Digital Object Identifier
- Title
-
Customizing Student Networks From Heterogeneous Teachers via Adaptive Knowledge AmalgamationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-08-20Full publication date if available
- Authors
-
Chengchao Shen, Mengqi Xue, Xinchao Wang, Jie Song, Li Sun, Mingli SongList of authors in order
- Landing page
-
https://arxiv.org/abs/1908.07121Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1908.07121Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1908.07121Direct OA link when available
- Concepts
-
Computer science, Ambiguity, Exploit, Task (project management), Set (abstract data type), Scheme (mathematics), Dual (grammatical number), Artificial intelligence, Focus (optics), Sample (material), Machine learning, Mathematical analysis, Mathematics, Optics, Programming language, Chromatography, Art, Chemistry, Computer security, Management, Economics, Physics, LiteratureTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 1, 2022: 1, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2969933406 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1908.07121 |
| ids.doi | https://doi.org/10.48550/arxiv.1908.07121 |
| ids.mag | 2969933406 |
| ids.openalex | https://openalex.org/W2969933406 |
| fwci | |
| type | preprint |
| title | Customizing Student Networks From Heterogeneous Teachers via Adaptive Knowledge Amalgamation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8031976222991943 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780522230 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7393770217895508 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1140419 |
| concepts[1].display_name | Ambiguity |
| concepts[2].id | https://openalex.org/C165696696 |
| concepts[2].level | 2 |
| concepts[2].score | 0.733482837677002 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[2].display_name | Exploit |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6935019493103027 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C177264268 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6072067618370056 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[4].display_name | Set (abstract data type) |
| concepts[5].id | https://openalex.org/C77618280 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5728214979171753 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[5].display_name | Scheme (mathematics) |
| concepts[6].id | https://openalex.org/C2780980858 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4969682991504669 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q110022 |
| concepts[6].display_name | Dual (grammatical number) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44354933500289917 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C192209626 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4425073266029358 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[8].display_name | Focus (optics) |
| concepts[9].id | https://openalex.org/C198531522 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4161808490753174 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[9].display_name | Sample (material) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4096044898033142 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C120665830 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[13].display_name | Optics |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C43617362 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[15].display_name | Chromatography |
| concepts[16].id | https://openalex.org/C142362112 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[16].display_name | Art |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C38652104 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[18].display_name | Computer security |
| concepts[19].id | https://openalex.org/C187736073 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[19].display_name | Management |
| concepts[20].id | https://openalex.org/C162324750 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[20].display_name | Economics |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C124952713 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[22].display_name | Literature |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8031976222991943 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/ambiguity |
| keywords[1].score | 0.7393770217895508 |
| keywords[1].display_name | Ambiguity |
| keywords[2].id | https://openalex.org/keywords/exploit |
| keywords[2].score | 0.733482837677002 |
| keywords[2].display_name | Exploit |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.6935019493103027 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/set |
| keywords[4].score | 0.6072067618370056 |
| keywords[4].display_name | Set (abstract data type) |
| keywords[5].id | https://openalex.org/keywords/scheme |
| keywords[5].score | 0.5728214979171753 |
| keywords[5].display_name | Scheme (mathematics) |
| keywords[6].id | https://openalex.org/keywords/dual |
| keywords[6].score | 0.4969682991504669 |
| keywords[6].display_name | Dual (grammatical number) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.44354933500289917 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/focus |
| keywords[8].score | 0.4425073266029358 |
| keywords[8].display_name | Focus (optics) |
| keywords[9].id | https://openalex.org/keywords/sample |
| keywords[9].score | 0.4161808490753174 |
| keywords[9].display_name | Sample (material) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4096044898033142 |
| keywords[10].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1908.07121 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1908.07121 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1908.07121 |
| locations[1].id | doi:10.48550/arxiv.1908.07121 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1908.07121 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5082043316 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0249-764X |
| authorships[0].author.display_name | Chengchao Shen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chengchao Shen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5040860593 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4936-4887 |
| authorships[1].author.display_name | Mengqi Xue |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mengqi Xue |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5015574447 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0057-1404 |
| authorships[2].author.display_name | Xinchao Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinchao Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5047371218 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3671-6521 |
| authorships[3].author.display_name | Jie Song |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jie Song |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100318678 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2957-4214 |
| authorships[4].author.display_name | Li Sun |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li Sun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5026532752 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2621-6048 |
| authorships[5].author.display_name | Mingli Song |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mingli Song |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1908.07121 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-08-29T00:00:00 |
| display_name | Customizing Student Networks From Heterogeneous Teachers via Adaptive Knowledge Amalgamation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W17155033, https://openalex.org/W3207760230, https://openalex.org/W1496222301, https://openalex.org/W1590307681, https://openalex.org/W2536018345, https://openalex.org/W4312814274, https://openalex.org/W4285370786, https://openalex.org/W2296488620, https://openalex.org/W2358353312, https://openalex.org/W2353836703 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1908.07121 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1908.07121 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1908.07121 |
| primary_location.id | pmh:oai:arXiv.org:1908.07121 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1908.07121 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1908.07121 |
| publication_date | 2019-08-20 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2743289088, https://openalex.org/W2963881378, https://openalex.org/W1903029394, https://openalex.org/W2613718673, https://openalex.org/W2520549145, https://openalex.org/W2731516819, https://openalex.org/W1846799578, https://openalex.org/W2964024558, https://openalex.org/W2964118293, https://openalex.org/W2963777504, https://openalex.org/W2963446712, https://openalex.org/W2907029635, https://openalex.org/W2780638627, https://openalex.org/W2895168809, https://openalex.org/W1821462560, https://openalex.org/W2194775991, https://openalex.org/W2966861238, https://openalex.org/W2947696193, https://openalex.org/W2165698076, https://openalex.org/W2561238782, https://openalex.org/W2963370235, https://openalex.org/W2163605009, https://openalex.org/W1834627138, https://openalex.org/W3034342078, https://openalex.org/W1797268635, https://openalex.org/W1916279783, https://openalex.org/W1686810756, https://openalex.org/W2138011018, https://openalex.org/W2257483379, https://openalex.org/W2963786238, https://openalex.org/W3106250896, https://openalex.org/W2097117768, https://openalex.org/W2897536120, https://openalex.org/W2412782625, https://openalex.org/W2096943734, https://openalex.org/W2798381792 |
| referenced_works_count | 36 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 48, 54, 84, 118 |
| abstract_inverted_index.In | 29 |
| abstract_inverted_index.To | 79, 112 |
| abstract_inverted_index.We | 63, 140 |
| abstract_inverted_index.as | 42, 45 |
| abstract_inverted_index.be | 74 |
| abstract_inverted_index.by | 10, 60, 156 |
| abstract_inverted_index.in | 21 |
| abstract_inverted_index.no | 65 |
| abstract_inverted_index.of | 3, 56, 167 |
| abstract_inverted_index.on | 17, 145 |
| abstract_inverted_index.or | 77 |
| abstract_inverted_index.so | 44 |
| abstract_inverted_index.to | 35, 46, 107 |
| abstract_inverted_index.we | 32, 82, 116 |
| abstract_inverted_index.and | 20, 70, 101, 148 |
| abstract_inverted_index.are | 24, 68 |
| abstract_inverted_index.for | 26, 123 |
| abstract_inverted_index.how | 34 |
| abstract_inverted_index.may | 15, 73 |
| abstract_inverted_index.set | 55 |
| abstract_inverted_index.the | 61, 90, 94, 98, 104, 109, 114, 127, 133, 136, 142, 153, 168 |
| abstract_inverted_index.been | 8 |
| abstract_inverted_index.deep | 5 |
| abstract_inverted_index.each | 71, 124 |
| abstract_inverted_index.end, | 81 |
| abstract_inverted_index.even | 163 |
| abstract_inverted_index.from | 93, 131 |
| abstract_inverted_index.have | 7 |
| abstract_inverted_index.many | 22 |
| abstract_inverted_index.only | 132 |
| abstract_inverted_index.same | 99 |
| abstract_inverted_index.such | 37, 157 |
| abstract_inverted_index.than | 165 |
| abstract_inverted_index.that | 52, 87, 152 |
| abstract_inverted_index.then | 102 |
| abstract_inverted_index.this | 30, 80 |
| abstract_inverted_index.with | 135 |
| abstract_inverted_index.These | 13 |
| abstract_inverted_index.build | 108 |
| abstract_inverted_index.cases | 23 |
| abstract_inverted_index.first | 88 |
| abstract_inverted_index.focus | 16 |
| abstract_inverted_index.human | 66 |
| abstract_inverted_index.known | 41 |
| abstract_inverted_index.least | 137 |
| abstract_inverted_index.study | 33 |
| abstract_inverted_index.tasks | 19, 58 |
| abstract_inverted_index.those | 166 |
| abstract_inverted_index.train | 47 |
| abstract_inverted_index.user. | 62 |
| abstract_inverted_index.assume | 64 |
| abstract_inverted_index.better | 164 |
| abstract_inverted_index.either | 75 |
| abstract_inverted_index.employ | 117 |
| abstract_inverted_index.learns | 129 |
| abstract_inverted_index.number | 2 |
| abstract_inverted_index.paper, | 31 |
| abstract_inverted_index.scheme | 121 |
| abstract_inverted_index.where, | 122 |
| abstract_inverted_index.defined | 59 |
| abstract_inverted_index.exploit | 36 |
| abstract_inverted_index.learned | 155 |
| abstract_inverted_index.massive | 1 |
| abstract_inverted_index.network | 51 |
| abstract_inverted_index.online. | 12 |
| abstract_inverted_index.results | 150 |
| abstract_inverted_index.sample, | 126 |
| abstract_inverted_index.several | 146 |
| abstract_inverted_index.sharing | 97 |
| abstract_inverted_index.single- | 76 |
| abstract_inverted_index.student | 50, 110, 128 |
| abstract_inverted_index.tackles | 53 |
| abstract_inverted_index.teacher | 72, 134 |
| abstract_inverted_index.achieves | 161 |
| abstract_inverted_index.adaptive | 158 |
| abstract_inverted_index.approach | 144 |
| abstract_inverted_index.datasets | 147 |
| abstract_inverted_index.evaluate | 141 |
| abstract_inverted_index.extracts | 89 |
| abstract_inverted_index.learning | 120 |
| abstract_inverted_index.network. | 111 |
| abstract_inverted_index.networks | 6, 14 |
| abstract_inverted_index.proposed | 143 |
| abstract_inverted_index.released | 9 |
| abstract_inverted_index.strategy | 86 |
| abstract_inverted_index.student, | 154 |
| abstract_inverted_index.teachers | 96 |
| abstract_inverted_index.datasets. | 28 |
| abstract_inverted_index.different | 18, 27 |
| abstract_inverted_index.dual-step | 85 |
| abstract_inverted_index.extracted | 105 |
| abstract_inverted_index.introduce | 83 |
| abstract_inverted_index.knowledge | 92, 106, 159 |
| abstract_inverted_index.networks, | 40 |
| abstract_inverted_index.optimized | 25 |
| abstract_inverted_index.selective | 57, 119 |
| abstract_inverted_index.sub-task, | 100 |
| abstract_inverted_index.teachers, | 43 |
| abstract_inverted_index.teachers. | 169 |
| abstract_inverted_index.training, | 115 |
| abstract_inverted_index.adaptively | 130 |
| abstract_inverted_index.ambiguity. | 139 |
| abstract_inverted_index.available, | 69 |
| abstract_inverted_index.customized | 49 |
| abstract_inverted_index.developers | 11 |
| abstract_inverted_index.facilitate | 113 |
| abstract_inverted_index.prediction | 138 |
| abstract_inverted_index.unlabelled | 125 |
| abstract_inverted_index.amalgamates | 103 |
| abstract_inverted_index.annotations | 67 |
| abstract_inverted_index.demonstrate | 151 |
| abstract_inverted_index.multi-task. | 78 |
| abstract_inverted_index.pre-trained | 39 |
| abstract_inverted_index.experimental | 149 |
| abstract_inverted_index.performances | 162 |
| abstract_inverted_index.well-trained | 4 |
| abstract_inverted_index.amalgamation, | 160 |
| abstract_inverted_index.heterogeneous | 38, 95 |
| abstract_inverted_index.task-specific | 91 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |