Cutting Through the Noise: Boosting LLM Performance on Math Word Problems Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.15444
Large Language Models (LLMs) excel at various tasks, including solving math word problems (MWPs), but struggle with real-world problems containing irrelevant information. To address this, we propose a prompting framework that generates adversarial variants of MWPs by adding irrelevant variables. We introduce a dataset, PROBLEMATHIC, containing both adversarial and non-adversarial MWPs. Our experiments reveal that LLMs are susceptible to distraction by numerical noise, resulting in an average relative performance drop of ~26% on adversarial MWPs. To mitigate this, we fine-tune LLMs (Llama-2, Mistral) on the adversarial samples from our dataset. Fine-tuning on adversarial training instances improves performance on adversarial MWPs by ~8%, indicating increased robustness to noise and improved ability to identify relevant data for reasoning. Finally, to assess the generalizability of our prompting framework, we introduce GSM-8K-Adv, an adversarial variant of the GSM-8K benchmark. LLMs continue to struggle when faced with adversarial information, reducing performance by up to 6%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.15444
- https://arxiv.org/pdf/2406.15444
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400025230
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400025230Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.15444Digital Object Identifier
- Title
-
Cutting Through the Noise: Boosting LLM Performance on Math Word ProblemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-30Full publication date if available
- Authors
-
Ujjwala Anantheswaran, Himanshu Gupta, Kevin Scaria, Shreyas Verma, Chitta Baral, Swaroop MishraList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.15444Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.15444Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.15444Direct OA link when available
- Concepts
-
Robustness (evolution), Mathematics, Computer science, Mathematics education, Biology, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400025230 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.15444 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.15444 |
| ids.openalex | https://openalex.org/W4400025230 |
| fwci | |
| type | preprint |
| title | Cutting Through the Noise: Boosting LLM Performance on Math Word Problems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T13523 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9753999710083008 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Mathematics, Computing, and Information Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63479239 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6492016315460205 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[0].display_name | Robustness (evolution) |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.380764365196228 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3582776188850403 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C145420912 |
| concepts[3].level | 1 |
| concepts[3].score | 0.33840715885162354 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[3].display_name | Mathematics education |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.12174001336097717 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C104317684 |
| concepts[5].level | 2 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[5].display_name | Gene |
| concepts[6].id | https://openalex.org/C55493867 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[6].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/robustness |
| keywords[0].score | 0.6492016315460205 |
| keywords[0].display_name | Robustness (evolution) |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.380764365196228 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3582776188850403 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mathematics-education |
| keywords[3].score | 0.33840715885162354 |
| keywords[3].display_name | Mathematics education |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.12174001336097717 |
| keywords[4].display_name | Biology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.15444 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.15444 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.15444 |
| locations[1].id | doi:10.48550/arxiv.2406.15444 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | public-domain |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/public-domain |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.15444 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5059844013 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ujjwala Anantheswaran |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Anantheswaran, Ujjwala |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101643160 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3271-3032 |
| authorships[1].author.display_name | Himanshu Gupta |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gupta, Himanshu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038616311 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kevin Scaria |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Scaria, Kevin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5013095307 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Shreyas Verma |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Verma, Shreyas |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5083735830 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7549-723X |
| authorships[4].author.display_name | Chitta Baral |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Baral, Chitta |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5063722751 |
| authorships[5].author.orcid | https://orcid.org/0009-0001-6413-7001 |
| authorships[5].author.display_name | Swaroop Mishra |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mishra, Swaroop |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.15444 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-06-26T00:00:00 |
| display_name | Cutting Through the Noise: Boosting LLM Performance on Math Word Problems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.15444 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.15444 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.15444 |
| primary_location.id | pmh:oai:arXiv.org:2406.15444 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.15444 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.15444 |
| publication_date | 2024-05-30 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27, 42 |
| abstract_inverted_index.To | 22, 75 |
| abstract_inverted_index.We | 40 |
| abstract_inverted_index.an | 65, 128 |
| abstract_inverted_index.at | 5 |
| abstract_inverted_index.by | 36, 60, 100, 146 |
| abstract_inverted_index.in | 64 |
| abstract_inverted_index.of | 34, 70, 121, 131 |
| abstract_inverted_index.on | 72, 83, 91, 97 |
| abstract_inverted_index.to | 58, 105, 110, 117, 137, 148 |
| abstract_inverted_index.up | 147 |
| abstract_inverted_index.we | 25, 78, 125 |
| abstract_inverted_index.6%. | 149 |
| abstract_inverted_index.Our | 51 |
| abstract_inverted_index.and | 48, 107 |
| abstract_inverted_index.are | 56 |
| abstract_inverted_index.but | 14 |
| abstract_inverted_index.for | 114 |
| abstract_inverted_index.our | 88, 122 |
| abstract_inverted_index.the | 84, 119, 132 |
| abstract_inverted_index.LLMs | 55, 80, 135 |
| abstract_inverted_index.MWPs | 35, 99 |
| abstract_inverted_index.both | 46 |
| abstract_inverted_index.data | 113 |
| abstract_inverted_index.drop | 69 |
| abstract_inverted_index.from | 87 |
| abstract_inverted_index.math | 10 |
| abstract_inverted_index.that | 30, 54 |
| abstract_inverted_index.when | 139 |
| abstract_inverted_index.with | 16, 141 |
| abstract_inverted_index.word | 11 |
| abstract_inverted_index.~26% | 71 |
| abstract_inverted_index.~8%, | 101 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.MWPs. | 50, 74 |
| abstract_inverted_index.excel | 4 |
| abstract_inverted_index.faced | 140 |
| abstract_inverted_index.noise | 106 |
| abstract_inverted_index.this, | 24, 77 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.GSM-8K | 133 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.adding | 37 |
| abstract_inverted_index.assess | 118 |
| abstract_inverted_index.noise, | 62 |
| abstract_inverted_index.reveal | 53 |
| abstract_inverted_index.tasks, | 7 |
| abstract_inverted_index.(MWPs), | 13 |
| abstract_inverted_index.ability | 109 |
| abstract_inverted_index.address | 23 |
| abstract_inverted_index.average | 66 |
| abstract_inverted_index.propose | 26 |
| abstract_inverted_index.samples | 86 |
| abstract_inverted_index.solving | 9 |
| abstract_inverted_index.variant | 130 |
| abstract_inverted_index.various | 6 |
| abstract_inverted_index.Finally, | 116 |
| abstract_inverted_index.Language | 1 |
| abstract_inverted_index.Mistral) | 82 |
| abstract_inverted_index.continue | 136 |
| abstract_inverted_index.dataset, | 43 |
| abstract_inverted_index.dataset. | 89 |
| abstract_inverted_index.identify | 111 |
| abstract_inverted_index.improved | 108 |
| abstract_inverted_index.improves | 95 |
| abstract_inverted_index.mitigate | 76 |
| abstract_inverted_index.problems | 12, 18 |
| abstract_inverted_index.reducing | 144 |
| abstract_inverted_index.relative | 67 |
| abstract_inverted_index.relevant | 112 |
| abstract_inverted_index.struggle | 15, 138 |
| abstract_inverted_index.training | 93 |
| abstract_inverted_index.variants | 33 |
| abstract_inverted_index.(Llama-2, | 81 |
| abstract_inverted_index.fine-tune | 79 |
| abstract_inverted_index.framework | 29 |
| abstract_inverted_index.generates | 31 |
| abstract_inverted_index.including | 8 |
| abstract_inverted_index.increased | 103 |
| abstract_inverted_index.instances | 94 |
| abstract_inverted_index.introduce | 41, 126 |
| abstract_inverted_index.numerical | 61 |
| abstract_inverted_index.prompting | 28, 123 |
| abstract_inverted_index.resulting | 63 |
| abstract_inverted_index.benchmark. | 134 |
| abstract_inverted_index.containing | 19, 45 |
| abstract_inverted_index.framework, | 124 |
| abstract_inverted_index.indicating | 102 |
| abstract_inverted_index.irrelevant | 20, 38 |
| abstract_inverted_index.real-world | 17 |
| abstract_inverted_index.reasoning. | 115 |
| abstract_inverted_index.robustness | 104 |
| abstract_inverted_index.variables. | 39 |
| abstract_inverted_index.Fine-tuning | 90 |
| abstract_inverted_index.GSM-8K-Adv, | 127 |
| abstract_inverted_index.adversarial | 32, 47, 73, 85, 92, 98, 129, 142 |
| abstract_inverted_index.distraction | 59 |
| abstract_inverted_index.experiments | 52 |
| abstract_inverted_index.performance | 68, 96, 145 |
| abstract_inverted_index.susceptible | 57 |
| abstract_inverted_index.information, | 143 |
| abstract_inverted_index.information. | 21 |
| abstract_inverted_index.PROBLEMATHIC, | 44 |
| abstract_inverted_index.non-adversarial | 49 |
| abstract_inverted_index.generalizability | 120 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |